A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series
Yan, R., Li, F., Zhou, D., Ristaniemi, T., & Cong, F. (2020). A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series. In EUSIPCO 2020 : 28th European Signal Processing Conference (pp. 1090-1094). IEEE. European Signal Processing Conference. https://doi.org/10.23919/Eusipco47968.2020.9287518
Julkaistu sarjassa
European Signal Processing ConferencePäivämäärä
2020Oppiaine
TietotekniikkaMonitieteinen aivotutkimuskeskusHyvinvoinnin tutkimuksen yhteisöMathematical Information TechnologyCentre for Interdisciplinary Brain ResearchSchool of WellbeingTekijänoikeudet
© IEEE, 2020
Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to develop an end-to-end deep learning architecture using raw polysomnographic recordings to automate sleep scoring. The proposed model adopts two-dimensional convolutional neural networks (2D-CNN) to automatically learn features from multi-modality signals, together with a "squeeze and excitation" block for recalibrating channel-wise feature responses. The learnt representations are finally fed to a softmax classifier to generate predictions for each sleep stage. The model performance is evaluated on two public sleep datasets (SHHS and Sleep-EDF) with different available channels. The results have shown that our model achieves an overall accuracy of 85.2% on the SHHS dataset and an accuracy of 85% on the Sleep-EDF dataset. We have also demonstrated that the proposed architecture not only is able to handle various numbers of input channels and several signal modalities from different datasets but also exhibits short runtimes and low computational cost.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-7281-5001-7Konferenssi
Kuuluu julkaisuun
EUSIPCO 2020 : 28th European Signal Processing ConferenceISSN Hae Julkaisufoorumista
2219-5491Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/43490194
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work is supported by the scholarship from China Scholarship Council (Nos. 201606060227).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Automatic sleep scoring : a deep learning architecture for multi-modality time series
Yan, Rui; Li, Fan; Zhou, Dong Dong; Ristaniemi, Tapani; Cong, Fengyu (Elsevier, 2021)Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This ... -
An Automatic Sleep Scoring Toolbox : Multi-modality of Polysomnography Signals’ Processing
Yan, Rui; Li, Fan; Wang, Xiaoyu; Ristaniemi, Tapani; Cong, Fengyu (SCITEPRESS Science And Technology Publications, 2019)Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with the ... -
Multi-modality of polysomnography signals’ fusion for automatic sleep scoring
Yan, Rui; Zhang, Chi; Spruyt, Karen; Wei, Lai; Wang, Zhiqiang; Tian, Lili; Li, Xueqiao; Ristaniemi, Tapani; Zhang, Jihui; Cong, Fengyu (Elsevier BV, 2019)Objective: The study aims to develop an automatic sleep scoring method by fusing different polysomnography (PSG) signals and further to investigate PSG signals’ contribution to the scoring result. Methods: Eight combinations ... -
Alleviating Class Imbalance Problem in Automatic Sleep Stage Classification
Zhou, Dongdong; Xu, Qi; Wang, Jian; Xu, Hongming; Kettunen, Lauri; Chang, Zheng; Cong, Fengyu (Institute of Electrical and Electronics Engineers (IEEE), 2022)For real-world automatic sleep-stage classification tasks, various existing deep learning-based models are biased toward the majority with a high proportion. Because of the unique sleep structure, most of the current ... -
SingleChannelNet : A model for automatic sleep stage classification with raw single-channel EEG
Zhou, Dongdong; Wang, Jian; Hu, Guoqiang; Zhang, Jiacheng; Li, Fan; Yan, Rui; Kettunen, Lauri; Chang, Zheng; Xu, Qi; Cong, Fengyu (Elsevier, 2022)In diagnosing sleep disorders, sleep stage classification is a very essential yet time-consuming process. Various existing state-of-the-art approaches rely on hand-crafted features and multi-modality polysomnography (PSG) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.