Automatic sleep scoring : a deep learning architecture for multi-modality time series
Yan, R., Li, F., Zhou, D.D., Ristaniemi, T., & Cong, F. (2021). Automatic sleep scoring : a deep learning architecture for multi-modality time series. Journal of Neuroscience Methods, 348, Article 108971. https://doi.org/10.1016/j.jneumeth.2020.108971
Published in
Journal of Neuroscience MethodsDate
2021Copyright
© 2020 Elsevier B.V.
Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings.
Method: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages.
Result: Model performance is evaluated on three public datasets. For all tasks with different available channels, our model achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of multiple polysomnographic signals.
Comparison: Compared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or better performance, and exhibits low computational cost.
Conclusions: The model demonstrates its transferability among different datasets, without changing model architecture or hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care.
...
Publisher
ElsevierISSN Search the Publication Forum
0165-0270Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/46982800
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by the National Natural Science Foundation of China (Grant No. 91748105), National Foundation in China (No. JCKY2019110B009 & 2020-JCJQ-JJ-252), the Fundamental Research Funds for the Central Universities [DUT2019, DUT20LAB303] in Dalian University of Technology in China, and the China Scholarship Council (Nos. 201606060227).License
Related items
Showing items with similar title or keywords.
-
A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series
Yan, Rui; Li, Fan; Zhou, DongDong; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2020)Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to ... -
An Automatic Sleep Scoring Toolbox : Multi-modality of Polysomnography Signals’ Processing
Yan, Rui; Li, Fan; Wang, Xiaoyu; Ristaniemi, Tapani; Cong, Fengyu (SCITEPRESS Science And Technology Publications, 2019)Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with the ... -
Alleviating Class Imbalance Problem in Automatic Sleep Stage Classification
Zhou, Dongdong; Xu, Qi; Wang, Jian; Xu, Hongming; Kettunen, Lauri; Chang, Zheng; Cong, Fengyu (Institute of Electrical and Electronics Engineers (IEEE), 2022)For real-world automatic sleep-stage classification tasks, various existing deep learning-based models are biased toward the majority with a high proportion. Because of the unique sleep structure, most of the current ... -
Multi-modality of polysomnography signals’ fusion for automatic sleep scoring
Yan, Rui; Zhang, Chi; Spruyt, Karen; Wei, Lai; Wang, Zhiqiang; Tian, Lili; Li, Xueqiao; Ristaniemi, Tapani; Zhang, Jihui; Cong, Fengyu (Elsevier BV, 2019)Objective: The study aims to develop an automatic sleep scoring method by fusing different polysomnography (PSG) signals and further to investigate PSG signals’ contribution to the scoring result. Methods: Eight combinations ... -
SingleChannelNet : A model for automatic sleep stage classification with raw single-channel EEG
Zhou, Dongdong; Wang, Jian; Hu, Guoqiang; Zhang, Jiacheng; Li, Fan; Yan, Rui; Kettunen, Lauri; Chang, Zheng; Xu, Qi; Cong, Fengyu (Elsevier, 2022)In diagnosing sleep disorders, sleep stage classification is a very essential yet time-consuming process. Various existing state-of-the-art approaches rely on hand-crafted features and multi-modality polysomnography (PSG) ...