Show simple item record

dc.contributor.authorPerälä, Tommi
dc.contributor.authorVanhatalo, Jarno
dc.contributor.authorChrysafi, Anna
dc.date.accessioned2020-12-22T07:40:30Z
dc.date.available2020-12-22T07:40:30Z
dc.date.issued2020
dc.identifier.citationPerälä, T., Vanhatalo, J., & Chrysafi, A. (2020). Calibrating Expert Assessments Using Hierarchical Gaussian Process Models. <i>Bayesian Analysis</i>, <i>15</i>(4), 1251-1280. <a href="https://doi.org/10.1214/19-BA1180" target="_blank">https://doi.org/10.1214/19-BA1180</a>
dc.identifier.otherCONVID_47460050
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73374
dc.description.abstractExpert assessments are routinely used to inform management and other decision making. However, often these assessments contain considerable biases and uncertainties for which reason they should be calibrated if possible. Moreover, coherently combining multiple expert assessments into one estimate poses a long-standing problem in statistics since modeling expert knowledge is often difficult. Here, we present a hierarchical Bayesian model for expert calibration in a task of estimating a continuous univariate parameter. The model allows experts’ biases to vary as a function of the true value of the parameter and according to the expert’s background. We follow the fully Bayesian approach (the so-called supra-Bayesian approach) and model experts’ bias functions explicitly using hierarchical Gaussian processes. We show how to use calibration data to infer the experts’ observation models with the use of bias functions and to calculate the bias corrected posterior distributions for an unknown system parameter of interest. We demonstrate and test our model and methods with simulated data and a real case study on data-limited fisheries stock assessment. The case study results show that experts’ biases vary with respect to the true system parameter value and that the calibration of the expert assessments improves the inference compared to using uncalibrated expert assessments or a vague uniform guess. Moreover, the bias functions in the real case study show important differences between the reliability of alternative experts. The model and methods presented here can be also straightforwardly applied to other applications than our case study.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherInternational Society for Bayesian Analysis
dc.relation.ispartofseriesBayesian Analysis
dc.rightsCC BY 4.0
dc.subject.otherexpert elicitation
dc.subject.otherbias correction
dc.subject.otherGaussian process
dc.subject.otherSupra Bayes
dc.subject.otherfisheries science
dc.subject.otherenvironmental management.
dc.titleCalibrating Expert Assessments Using Hierarchical Gaussian Process Models
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202012227317
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1251-1280
dc.relation.issn1936-0975
dc.relation.numberinseries4
dc.relation.volume15
dc.type.versionpublishedVersion
dc.rights.copyrightInternational Society for Bayesian Analysis
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber770884
dc.relation.grantnumber770884
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/770884/EU//COMPLEX-FISH
dc.subject.ysoasiantuntijat
dc.subject.ysogaussiset prosessit
dc.subject.ysoarviointimenetelmät
dc.subject.ysopäätöksenteko
dc.subject.ysotilastolliset mallit
dc.subject.ysobayesilainen menetelmä
dc.subject.ysokalakantojen hoito
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12104
jyx.subject.urihttp://www.yso.fi/onto/yso/p38750
jyx.subject.urihttp://www.yso.fi/onto/yso/p15768
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p26278
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p22184
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1214/19-BA1180
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramERC Consolidator Granten
jyx.fundingprogramERC Consolidator Grantfi
jyx.fundinginformationTP was funded by the Academy of Finland (through Academy Research Fellow Grant to Anna Kuparinen), by the University of Jyväskylä, and by the European Research Council (COMPLEX-FISH 770884 to Anna Kuparinen). AC was funded by the University of Helsinki through DENVI Doctoral Program Fellowship. JV has additionally been funded by Academy of Finland [Grants 304531 and 317255] and the research funds of University of Helsinki [decision No. 465/51/2014].
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0