Prediction of leukocyte counts during paediatric acute lymphoblastic leukaemia maintenance therapy
Karppinen, S., Lohi, O., & Vihola, M. (2019). Prediction of leukocyte counts during paediatric acute lymphoblastic leukaemia maintenance therapy. Scientific Reports, 9, Article 18076. https://doi.org/10.1038/s41598-019-54492-5
Julkaistu sarjassa
Scientific ReportsPäivämäärä
2019Tekijänoikeudet
© The Authors, 2019
Maintenance chemotherapy with oral 6-mercaptopurine and methotrexate remains a cornerstone of modern therapy for acute lymphoblastic leukaemia. The dosage and intensity of therapy are based on surrogate markers such as peripheral blood leukocyte and neutrophil counts. Dosage based leukocyte count predictions could provide support for dosage decisions clinicians face trying to find and maintain an appropriate dosage for the individual patient. We present two Bayesian nonlinear state space models for predicting patient leukocyte counts during the maintenance therapy. The models simplify some aspects of previously proposed models but allow for some extra flexibility. Our second model is an extension which accounts for extra variation in the leukocyte count due to a treatment adversity, infections, using C-reactive protein as a surrogate. The predictive performances of our models are compared against a model from the literature using time series cross-validation with patient data. In our experiments, our simplified models appear more robust and deliver competitive results with the model from the literature.
...
Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
2045-2322Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/33687281
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkija, SA; Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
S.K. and M.V. were supported by Academy of Finland grants 274740, 312605 and 315619. This research is related to the thematic research area DEMO (Decision Analytics utilising Causal Models and Multiobjective Optimisation) of the University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Valkosolupitoisuuksien bayesilainen mallintaminen lasten leukemian ylläpitohoidossa
Karppinen, Santeri (2018)Lasten akuutin lymfoblastileukemian ylläpitovaiheen hoidossa tehtävät lääkeannostuspäätökset pohjataan nykyisin potilaan veren valkosolupitoisuuteen, joka on hoidon tehokkuudesta kertova tekijä. Potilaalle sopiva lääkeannostus ... -
Calibrating Expert Assessments Using Hierarchical Gaussian Process Models
Perälä, Tommi; Vanhatalo, Jarno; Chrysafi, Anna (International Society for Bayesian Analysis, 2020)Expert assessments are routinely used to inform management and other decision making. However, often these assessments contain considerable biases and uncertainties for which reason they should be calibrated if possible. ... -
Bayesian Modeling of Sequential Discoveries
Zito, Alessandro; Rigon, Tommaso; Ovaskainen, Otso; Dunson, David B. (Taylor & Francis, 2022)We aim at modelling the appearance of distinct tags in a sequence of labelled objects. Common examples of this type of data include words in a corpus or distinct species in a sample. These sequential discoveries are often ... -
Estimating the causal effect of timing on the reach of social media posts
Valkonen, Lauri; Helske, Jouni; Karvanen, Juha (Springer Science and Business Media LLC, 2023)Modern companies regularly use social media to communicate with their customers. In addition to the content, the reach of a social media post may depend on the season, the day of the week, and the time of the day. We ... -
A Bayesian spatio‐temporal analysis of markets during the Finnish 1860s famine
Pasanen, Tiia‐Maria; Voutilainen, Miikka; Helske, Jouni; Högmander, Harri (Wiley-Blackwell, 2022)We develop a Bayesian spatio-temporal model to study pre-industrial grain market integration during the Finnish famine of the 1860s. Our model takes into account several problematic features often present when analysing ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.