Näytä suppeat kuvailutiedot

dc.contributor.authorDUNE Collaboration
dc.date.accessioned2020-12-08T10:42:01Z
dc.date.available2020-12-08T10:42:01Z
dc.date.issued2020
dc.identifier.citationDUNE Collaboration. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. <i>Physical Review D</i>, <i>102</i>(9), Article 092003. <a href="https://doi.org/10.1103/PhysRevD.102.092003" target="_blank">https://doi.org/10.1103/PhysRevD.102.092003</a>
dc.identifier.otherCONVID_47291582
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73028
dc.description.abstractThe Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review D
dc.rightsCC BY 4.0
dc.titleNeutrino interaction classification with a convolutional neural network in the DUNE far detector
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202012086973
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2470-0010
dc.relation.numberinseries9
dc.relation.volume102
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysohiukkasfysiikka
dc.subject.ysoluokitus (toiminta)
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.subject.ysoneutriino-oskillaatio
dc.subject.ysoneutriinot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
jyx.subject.urihttp://www.yso.fi/onto/yso/p12668
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p38690
jyx.subject.urihttp://www.yso.fi/onto/yso/p5219
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevD.102.092003
jyx.fundinginformationThis work wassupported by CNPq, FAPERJ, FAPEG and FAPESP,Brazil; CFI, Institute of Particle Physics and NSERC,Canada; CERN; MŠMT, Czech Republic; ERDF,H2020-EU and MSCA, European Union; CNRS/IN2P3and CEA, France; INFN, Italy; FCT, Portugal; NRF, SouthKorea; Comunidad de Madrid, Fundación“La Caixa”andMICINN, Spain; State Secretariat for Education, Researchand Innovation and SNSF, Switzerland; TÜBİTAK,Turkey; The Royal Society and UKRI/STFC, UnitedKingdom; DOE and NSF, United States of America.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0