dc.contributor.author | DUNE Collaboration | |
dc.date.accessioned | 2020-12-08T10:42:01Z | |
dc.date.available | 2020-12-08T10:42:01Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | DUNE Collaboration. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. <i>Physical Review D</i>, <i>102</i>(9), Article 092003. <a href="https://doi.org/10.1103/PhysRevD.102.092003" target="_blank">https://doi.org/10.1103/PhysRevD.102.092003</a> | |
dc.identifier.other | CONVID_47291582 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73028 | |
dc.description.abstract | The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review D | |
dc.rights | CC BY 4.0 | |
dc.title | Neutrino interaction classification with a convolutional neural network in the DUNE far detector | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202012086973 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2470-0010 | |
dc.relation.numberinseries | 9 | |
dc.relation.volume | 102 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | hiukkasfysiikka | |
dc.subject.yso | luokitus (toiminta) | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | neutriino-oskillaatio | |
dc.subject.yso | neutriinot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15576 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12668 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38690 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5219 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1103/PhysRevD.102.092003 | |
jyx.fundinginformation | This work wassupported by CNPq, FAPERJ, FAPEG and FAPESP,Brazil; CFI, Institute of Particle Physics and NSERC,Canada; CERN; MŠMT, Czech Republic; ERDF,H2020-EU and MSCA, European Union; CNRS/IN2P3and CEA, France; INFN, Italy; FCT, Portugal; NRF, SouthKorea; Comunidad de Madrid, Fundación“La Caixa”andMICINN, Spain; State Secretariat for Education, Researchand Innovation and SNSF, Switzerland; TÜBİTAK,Turkey; The Royal Society and UKRI/STFC, UnitedKingdom; DOE and NSF, United States of America. | |
dc.type.okm | A1 | |