Näytä suppeat kuvailutiedot

dc.contributor.authorDutta, Arpan
dc.contributor.authorNuutinen, Tarmo
dc.contributor.authorAlam, Khairul
dc.contributor.authorMatikainen, Antti
dc.contributor.authorLi, Peng
dc.contributor.authorHulkko, Eero
dc.contributor.authorToppari, J. Jussi
dc.contributor.authorLipsanen, Harri
dc.contributor.authorKang, Guoguo
dc.date.accessioned2020-11-12T12:42:37Z
dc.date.available2020-11-12T12:42:37Z
dc.date.issued2020
dc.identifier.citationDutta, A., Nuutinen, T., Alam, K., Matikainen, A., Li, P., Hulkko, E., Toppari, J. J., Lipsanen, H., & Kang, G. (2020). Fabrication-friendly polarization-sensitive plasmonic grating for optimal surface-enhanced Raman spectroscopy. <i>Journal of the European Optical Society : Rapid Publications</i>, <i>16</i>, Article 22. <a href="https://doi.org/10.1186/s41476-020-00144-5" target="_blank">https://doi.org/10.1186/s41476-020-00144-5</a>
dc.identifier.otherCONVID_43605969
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72597
dc.description.abstractPlasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We designed multiple gratings having different fill factors using finite-difference time-domain (FDTD) simulations to incorporate different degrees of spectral detunings in their reflection dips from our Raman excitation (488 nm). Our numerical studies suggested that by tuning the spectral position of the optical resonance of the grating, via modifying their fill factor, we could optimize the achievable SERS enhancement. Moreover, by changing the polarization of the excitation light from transverse-magnetic to transverse-electric, we can disable the optical resonance of the gratings resulting in negligible SERS performance. To verify this, we fabricated and optically characterized the modelled gratings and ensured the presence of the desired detunings in their optical responses. Our Raman analysis on riboflavin confirmed that the higher overlap between the grating resonance and the intended Raman excitation yields stronger Raman enhancement only for TM polarized light. Our findings provide insight on the development of fabrication-friendly plasmonic gratings for optimal intensification of the Raman signal with an extra degree of control through the polarization of the excitation light. This feature enables studying Raman signal of exactly the same molecules with and without electromagnetic SERS enhancements, just by changing the polarization of the excitation, and thereby permits detailed studies on the selection rules and the chemical enhancements possibly involved in SERS.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of the European Optical Society : Rapid Publications
dc.rightsCC BY 4.0
dc.subject.otherplasmonic grating
dc.subject.othersurface-enhanced Raman scattering
dc.subject.otherfill factor
dc.titleFabrication-friendly polarization-sensitive plasmonic grating for optimal surface-enhanced Raman spectroscopy
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202011126630
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1990-2573
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s). 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber289947
dc.relation.grantnumber323995
dc.subject.ysoplasmoniikka
dc.subject.ysonanorakenteet
dc.subject.ysopintaplasmonit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39030
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p38896
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1186/s41476-020-00144-5
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe reported research work was supported by National Natural Science Foundation of China (NSFC) (No. 61675020), Academy of Finland (Nos. 298298, 289947, 323995, 320166 and 320167), NP-Nano FidiPro by the Finnish Funding Agency for Innovation (TEKES) and NATO project (No. G5250).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0