Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity : A First-Principles Study
Kuisma, M., Rousseaux, B., Czajkowski, K. M., Rossi, T. P., Shegai, T., Erhart, P., & Antosiewicz, T. J. (2022). Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity : A First-Principles Study. ACS Photonics, 9(3), 1065-1077. https://doi.org/10.1021/acsphotonics.2c00066
Julkaistu sarjassa
ACS PhotonicsTekijät
Päivämäärä
2022Tekijänoikeudet
© 2022 the Authors
Ultrastrong coupling (USC) is a distinct regime of light-matter interaction in which the coupling strength is comparable to the resonance energy of the cavity or emitter. In the USC regime, common approximations to quantum optical Hamiltonians, such as the rotating wave approximation, break down as the ground state of the coupled system gains photonic character due to admixing of vacuum states with higher excited states, leading to ground-state energy changes. USC is usually achieved by collective coherent coupling of many quantum emitters to a single mode cavity, whereas USC with a single molecule remains challenging. Here, we show by time-dependent density functional theory (TDDFT) calculations that a single organic molecule can reach USC with a plasmonic dimer, consisting of a few hundred atoms. In this context, we discuss the capacity of TDDFT to represent strong coupling and its connection to the quantum optical Hamiltonian. We find that USC leads to appreciable ground-state energy modifications accounting for a non-negligible part of the total interaction energy, comparable to kBT at room temperature.
...
Julkaisija
American Chemical Society (ACS)ISSN Hae Julkaisufoorumista
2330-4022Asiasanat
Alkuperäislähde
http://dx.doi.org/10.1021/acsphotonics.2c00066Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104496373
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
We acknowledge financial support from the Swedish Research Council (VR Miljö, Grant No: 2016-06059), the Knut and Alice Wallenberg Foundation (Grant No: 2019.0140), the Polish National Science Center (projects 2019/34/E/ST3/00359 and 2019/35/B/ST5/02477). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 838996 and support from the Academy of Finland under the Grant No. 332429. T.J.A. acknowledges support from the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Dipolar coupling of nanoparticle-molecule assemblies : an efficient approach for studying strong coupling
Fojt, Jakub; Rossi, Tuomas P.; Antosiewicz, Tomasz J.; Kuisma, Mikael; Erhart, Paul (American Institute of Physics, 2021)Strong light–matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development ... -
Time-dependent density-functional theory for strongly interacting electrons
Cort Barrada, Luis; Karlsson, Daniel; Lani, Giovanna; van Leeuwen, Robert (American Physical Society, 2017)We consider an analytically solvable model of two interacting electrons that allows for the calculation of the exact exchange-correlation kernel of time-dependent density functional theory. This kernel, as well as ... -
Plasmon Excitations in Mixed Metallic Nanoarrays
Conley, Kevin M.; Nayyar, Neha; Rossi, Tuomas P.; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti J.; Rahman, Talat S. (American Chemical Society, 2019)Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions ... -
Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory : An Efficient Tool for Analyzing Plasmonic Excitations
Rossi, Tuomas P.; Kuisma, Mikael; Puska, Martti J.; Nieminen, Risto M.; Erhart, Paul (American Chemical Society, 2017)Electronic excitations can be efficiently analyzed in terms of the underlying Kohn-Sham (KS) electron-hole transitions. While such a decomposition is readily available in the linear-response time-dependent density-functional ... -
Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays
Berghuis, Anton Matthijs; Tichauer, Ruth H.; de Jong, Lianne M. A.; Sokolovskii, Ilia; Bai, Ping; Ramezani, Mohammad; Murai, Shunsuke; Groenhof, Gerrit; Gómez Rivas, Jaime (American Chemical Society, 2022)Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.