dc.contributor.author | Koskela, Pekka | |
dc.contributor.author | Koski, Aleksis | |
dc.contributor.author | Onninen, Jani | |
dc.date.accessioned | 2020-08-26T10:41:20Z | |
dc.date.available | 2020-08-26T10:41:20Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Koskela, P., Koski, A., & Onninen, J. (2020). Sobolev homeomorphic extensions onto John domains. <i>Journal of Functional Analysis</i>, <i>279</i>(10), Article 108719. <a href="https://doi.org/10.1016/j.jfa.2020.108719" target="_blank">https://doi.org/10.1016/j.jfa.2020.108719</a> | |
dc.identifier.other | CONVID_41727055 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71515 | |
dc.description.abstract | Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schöenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W1,2-extension but not even a homeomorphic W1,1-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p<2. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier Inc. | |
dc.relation.ispartofseries | Journal of Functional Analysis | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | Sobolev homeomorphisms | |
dc.subject.other | Sobolev extensions | |
dc.subject.other | John domains | |
dc.subject.other | quasidisks | |
dc.title | Sobolev homeomorphic extensions onto John domains | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202008265656 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0022-1236 | |
dc.relation.numberinseries | 10 | |
dc.relation.volume | 279 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Elsevier | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 307023 | |
dc.relation.grantnumber | 307023 | |
dc.relation.grantnumber | 323960 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE | |
dc.subject.yso | funktionaalianalyysi | |
dc.subject.yso | funktioteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17780 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18494 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.jfa.2020.108719 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | FP7 (EU's 7th Framework Programme) | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | EU:n 7. puiteohjelma (FP7) | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | P. Koskela was supported by the Academy of Finland Grant number 323960. A. Koski was supported by the Academy of Finland Grant number 307023. J. Onninen was supported by the NSF grant DMS-1700274. | |
dc.type.okm | A1 | |