Show simple item record

dc.contributor.authorYen, Eugenie C.
dc.contributor.authorMcCarthy, Shane A.
dc.contributor.authorGalarza, Juan A.
dc.contributor.authorGeneralovic, Tomas N.
dc.contributor.authorPelan, Sarah
dc.contributor.authorNguyen, Petr
dc.contributor.authorMeier, Joana I.
dc.contributor.authorWarren, Ian A.
dc.contributor.authorMappes, Johanna
dc.contributor.authorDurbin, Richard
dc.contributor.authorJiggins, Chris D.
dc.date.accessioned2020-08-26T10:37:59Z
dc.date.available2020-08-26T10:37:59Z
dc.date.issued2020
dc.identifier.citationYen, E. C., McCarthy, S. A., Galarza, J. A., Generalovic, T. N., Pelan, S., Nguyen, P., Meier, J. I., Warren, I. A., Mappes, J., Durbin, R., & Jiggins, C. D. (2020). A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning. <i>GigaScience</i>, <i>9</i>(8), Article giaa088. <a href="https://doi.org/10.1093/gigascience/giaa088" target="_blank">https://doi.org/10.1093/gigascience/giaa088</a>
dc.identifier.otherCONVID_41782977
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71514
dc.description.abstractBackground Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits heterozygosity for assembly. Short, parental reads are used to assign parental origin to long reads from their F1 offspring before assembly, enabling complete haplotype resolution. Trio binning could therefore provide an effective strategy for assembling highly heterozygous genomes, which are traditionally problematic, such as insect genomes. This includes the wood tiger moth (Arctia plantaginis), which is an evolutionary study system for warning colour polymorphism. Findings We produced a high-quality, haplotype-resolved assembly for Arctia plantaginis through trio binning. We sequenced a same-species family (F1 heterozygosity ∼1.9%) and used parental Illumina reads to bin 99.98% of offspring Pacific Biosciences reads by parental origin, before assembling each haplotype separately and scaffolding with 10X linked reads. Both assemblies are contiguous (mean scaffold N50: 8.2 Mb) and complete (mean BUSCO completeness: 97.3%), with annotations and 31 chromosomes identified through karyotyping. We used the assembly to analyse genome-wide population structure and relationships between 40 wild resequenced individuals from 5 populations across Europe, revealing the Georgian population as the most genetically differentiated with the lowest genetic diversity. Conclusions We present the first invertebrate genome to be assembled via trio binning. This assembly is one of the highest quality genomes available for Lepidoptera, supporting trio binning as a potent strategy for assembling heterozygous genomes. Using our assembly, we provide genomic insights into the geographic population structure of A. plantaginis.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherBiomed Central
dc.relation.ispartofseriesGigaScience
dc.rightsCC BY 4.0
dc.subject.otherhaplotype
dc.subject.otherwood tiger moth
dc.titleA haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202008265655
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineEvoluutiotutkimus (huippuyksikkö)fi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.contributor.oppiaineCentre of Excellence in Evolutionary Researchen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2047-217X
dc.relation.numberinseries8
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber320438
dc.relation.grantnumber328474
dc.subject.ysotäpläsiilikäs
dc.subject.ysogenomiikka
dc.subject.ysoperimä
dc.subject.ysopopulaatiogenetiikka
dc.subject.ysogenotyyppi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27473
jyx.subject.urihttp://www.yso.fi/onto/yso/p5146
jyx.subject.urihttp://www.yso.fi/onto/yso/p8862
jyx.subject.urihttp://www.yso.fi/onto/yso/p9005
jyx.subject.urihttp://www.yso.fi/onto/yso/p8863
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1093/gigascience/giaa088
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationC.D.J., E.C.Y., T.N.G., J.I.M., and I.A.W. were supported by the European Research Council Speciation Genetics advanced grant (No. 339873) and the Biotechnology and Biological Sciences Research Council (No. BB/R007500/1) to perform DNA extraction, sequencing, and genome annotation and population genomic analysis. S.A.M. and R.D. were supported by the Wellcome Trust (No. WT207492) to perform genome assembly. S.P. was supported by the Wellcome Trust (No. WT206194) to perform genome curation. T.N.G. was supported by the Biotechnology and Biological Sciences Research Council (No. BB/M011194/1) to perform genome annotation. J.A.G. and J.M. were supported by the Academy of Finland (project No. 320438 and 328474) and Jyväskylän Yliopisto to perform family rearing and fieldwork. P.N. was supported by the Grantová Agentura České Republiky (Reg. No. 20-20650Y) to perform cytogenetic analysis.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0