A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning
Yen, E. C., McCarthy, S. A., Galarza, J. A., Generalovic, T. N., Pelan, S., Nguyen, P., Meier, J. I., Warren, I. A., Mappes, J., Durbin, R., & Jiggins, C. D. (2020). A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning. GigaScience, 9(8), Article giaa088. https://doi.org/10.1093/gigascience/giaa088
Julkaistu sarjassa
GigaScienceTekijät
Päivämäärä
2020Oppiaine
Ekologia ja evoluutiobiologiaEvoluutiotutkimus (huippuyksikkö)Ecology and Evolutionary BiologyCentre of Excellence in Evolutionary ResearchTekijänoikeudet
© 2020 the Authors
Background
Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits heterozygosity for assembly. Short, parental reads are used to assign parental origin to long reads from their F1 offspring before assembly, enabling complete haplotype resolution. Trio binning could therefore provide an effective strategy for assembling highly heterozygous genomes, which are traditionally problematic, such as insect genomes. This includes the wood tiger moth (Arctia plantaginis), which is an evolutionary study system for warning colour polymorphism.
Findings
We produced a high-quality, haplotype-resolved assembly for Arctia plantaginis through trio binning. We sequenced a same-species family (F1 heterozygosity ∼1.9%) and used parental Illumina reads to bin 99.98% of offspring Pacific Biosciences reads by parental origin, before assembling each haplotype separately and scaffolding with 10X linked reads. Both assemblies are contiguous (mean scaffold N50: 8.2 Mb) and complete (mean BUSCO completeness: 97.3%), with annotations and 31 chromosomes identified through karyotyping. We used the assembly to analyse genome-wide population structure and relationships between 40 wild resequenced individuals from 5 populations across Europe, revealing the Georgian population as the most genetically differentiated with the lowest genetic diversity.
Conclusions
We present the first invertebrate genome to be assembled via trio binning. This assembly is one of the highest quality genomes available for Lepidoptera, supporting trio binning as a potent strategy for assembling heterozygous genomes. Using our assembly, we provide genomic insights into the geographic population structure of A. plantaginis.
...
Julkaisija
Biomed CentralISSN Hae Julkaisufoorumista
2047-217XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41782977
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiaprofessorin tutkimuskulut, SA; Akatemiaohjelma, SALisätietoja rahoituksesta
C.D.J., E.C.Y., T.N.G., J.I.M., and I.A.W. were supported by the European Research Council Speciation Genetics advanced grant (No. 339873) and the Biotechnology and Biological Sciences Research Council (No. BB/R007500/1) to perform DNA extraction, sequencing, and genome annotation and population genomic analysis. S.A.M. and R.D. were supported by the Wellcome Trust (No. WT207492) to perform genome assembly. S.P. was supported by the Wellcome Trust (No. WT206194) to perform genome curation. T.N.G. was supported by the Biotechnology and Biological Sciences Research Council (No. BB/M011194/1) to perform genome annotation. J.A.G. and J.M. were supported by the Academy of Finland (project No. 320438 and 328474) and Jyväskylän Yliopisto to perform family rearing and fieldwork. P.N. was supported by the Grantová Agentura České Republiky (Reg. No. 20-20650Y) to perform cytogenetic analysis. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The complete mitochondrial genome of the wood tiger moth (Arctia plantaginis) and phylogenetic analyses within Arctiinae
Galarza, Juan A.; Mappes, Johanna (Taylor & Francis, 2021)We report the assembly and annotation of the complete mitochondrial genome of the warningly-coloured wood tiger moth (Arctia plantaginis) and investigate its phylogenetic position within Arctiinae. The A.plantaginis ... -
Evolution of signal diversity : predator-prey interactions and the maintenance of warning colour polymorphism in the wood tiger moth Arctia plantaginis
Rönkä, Katja (University of Jyväskylä, 2017)Aposematic organisms avoid predation by advertising defences with warning signals. The theory of aposematism predicts warning signal uniformity, yet variation in warning coloration is widespread. The chemically defended ... -
Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis
Lindstedt, Carita; Suisto, Kaisa; Burdfield-Steel, Emily; Winters, Anne E.; Mappes, Johanna (Oxford University Press, 2020)To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation ... -
Prophylactic self-medication and bacterial avoidance behaviours in Arctia plantaginis larvae
Murphy, Liam M. (2017)Insects have a range of behavioural defences that they can use against parasites. One of these behaviours is self-medication: the use of biologically active compounds by the host to ameliorate the effects of parasites and ... -
Fenologian vaikutus aposemaattisen täpläsiilikkään (Arctia plantaginis) värimuotojen saalistuspaineeseen
Siirilä, Tuisku (2023)Predation is a significant selection pressure on populations of prey species and as a result many species have evolved different defense mechanisms against predators. Various toxic, foul-tasting or smelly substances, spike ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.