Geodesic ray transform with matrix weights for piecewise constant functions
Ilmavirta, J., & Railo, J. (2020). Geodesic ray transform with matrix weights for piecewise constant functions. Annales Academiae Scientiarum Fennicae-Mathematica, 45(2), 1095-1102. https://doi.org/10.5186/aasfm.2020.4558
Julkaistu sarjassa
Annales Academiae Scientiarum Fennicae-MathematicaPäivämäärä
2020Oppiaine
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsTekijänoikeudet
© the Authors & Suomalainen tiedeakatemia, 2020
We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and in dimension three and higher we assume a foliation condition. We make no assumption regarding conjugate points or differentiability of the weight. This extends recent results for unweighted transforms.
Julkaisija
Suomalainen tiedeakatemiaISSN Hae Julkaisufoorumista
1239-629XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41663955
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SA; Huippuyksikkörahoitus, SALisätietoja rahoituksesta
J. I. was supported by the Academy of Finland (decision 295853). J. R. was supported by the Academy of Finland (Centre of Excellence in Inverse Problems Research at the University of Jyväskylä in 2017, Centre of Excellence in Inverse Modelling and Imaging at the University of Helsinki in 2018).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Geodesic X-ray tomography for piecewise constant functions on nontrapping manifolds
Ilmavirta, Joonas; Lehtonen, Jere; Salo, Mikko (Cambridge University Press, 2020)We show that on a two-dimensional compact nontrapping manifold with strictly convex boundary, a piecewise constant function is determined by its integrals over geodesics. In higher dimensions, we obtain a similar result ... -
On mixed and transverse ray transforms on orientable surfaces
Ilmavirta, Joonas; Mönkkönen, Keijo; Railo, Jesse (Walter de Gruyter GmbH, 2023)The geodesic ray transform, the mixed ray transform and the transverse ray transform of a tensor field on a surface can all be seen as what we call mixing ray transforms, compositions of the geodesic ray transform and an ... -
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, Joonas; Mönkkönen, Keijo (Springer Science and Business Media LLC, 2023)We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.