Charge Transfer Plasmons in Dimeric Electron Clusters
Selenius, E., Malola, S., Kuisma, M., & Häkkinen, H. (2020). Charge Transfer Plasmons in Dimeric Electron Clusters. Journal of Physical Chemistry C, 124(23), 12645-12654. https://doi.org/10.1021/acs.jpcc.0c02889
Published in
Journal of Physical Chemistry CDate
2020Copyright
© 2020 American Chemical Society
The tunability of the optical response of dimers of metal clusters and nanoparticles makes them ideal for many applications from sensing and imaging to inducing chemical reactions. We have studied charge transfer plasmons in separate and linked dimers of closed-shell electron clusters of 8 and 138 electrons using time-dependent density functional theory. The simple model clusters enable the systematic study of the charge transfer phenomenon from the electronic perspective. To identify the charge transfer plasmons, we have developed an index, the Charge Transfer Ratio, for quantifying the charge transfer nature of the excitations. In addition, we analyze the induced transition density and the electron transitions contributing to the dipole moment at the charge transfer plasmon energies. Our results show that the optical response of the dimers is very sensitive to changes in the inter-cluster separation and in the width of the linking channel, with charge transfer plasmon peaks appearing at low energies for dimers with linking or sufficient electron cloud overlap.
...
Publisher
American Chemical SocietyISSN Search the Publication Forum
1932-7447Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/35698474
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Research costs of Academy Professor, AoF; Postdoctoral Researcher, AoFAdditional information about funding
This work was supported by the Academy of Finland (grants 294217 and 319208, H.H.’s Academy Professorship, and M.K.’s Academy postdoctoral grant 295602) and the Emil Aaltonen Foundation (E.S.’s PhD scholarship). The computations were done at the CSC - the Finnish IT Center for Science (project COUPLES) and in the FGCI - Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533). ...License
Related items
Showing items with similar title or keywords.
-
Dipolar coupling of nanoparticle-molecule assemblies : an efficient approach for studying strong coupling
Fojt, Jakub; Rossi, Tuomas P.; Antosiewicz, Tomasz J.; Kuisma, Mikael; Erhart, Paul (American Institute of Physics, 2021)Strong light–matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development ... -
Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal–organic clusters
Makkonen, Esko; Rossi, Tuomas P.; Larsen, Ask Hjorth; Lopez-Acevedo, Olga; Rinke, Patrick; Kuisma, Mikael; Chen, Xi (AIP Publishing, 2021)Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional ... -
Analysis of the plasmonic excitations in assemblies of three-dimensional electron clusters
Selenius, Elli; Malola, Sami; Häkkinen, Hannu (American Physical Society (APS), 2020)In the quest to built novel metamaterials with unique optical properties, three-dimensional assemblies of metal clusters and nanoparticles are gathering significant attention. Organized geometries, such as tetrahedra and ... -
GPAW : An open Python package for electronic structure calculations
Mortensen, Jens Jørgen; Larsen, Ask Hjorth; Kuisma, Mikael; Ivanov, Aleksei V.; Taghizadeh, Alireza; Peterson, Andrew; Haldar, Anubhab; Dohn, Asmus Ougaard; Schäfer, Christian; Jónsson, Elvar Örn; Hermes, Eric D.; Nilsson, Fredrik Andreas; Kastlunger, Georg; Levi, Gianluca; Jónsson, Hannes; Häkkinen, Hannu; Fojt, Jakub; Kangsabanik, Jiban; Sødequist, Joachim; Lehtomäki, Jouko; Heske, Julian; Enkovaara, Jussi; Winther, Kirsten Trøstrup; Dulak, Marcin; Melander, Marko M.; Ovesen, Martin; Louhivuori, Martti; Walter, Michael; Gjerding, Morten; Lopez-Acevedo, Olga; Erhart, Paul; Warmbier, Robert; Würdemann, Rolf; Kaappa, Sami; Latini, Simone; Boland, Tara Maria; Bligaard, Thomas; Skovhus, Thorbjørn; Susi, Toma; Maxson, Tristan; Rossi, Tuomas; Chen, Xi; Schmerwitz, Yorick Leonard A.; Schiøtz, Jakob; Olsen, Thomas; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer (American Institute of Physics, 2024)We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using ... -
A Homoleptic Alkynyl‐Ligated [Au13Ag16L24]3‐ Cluster as a Catalytically Active Eight‐Electron Superatom
Li, Gao; Hakkinen, Hannu; Qin, Zhaoxian; Sharma, Sachil; Wan, Chong-qing; Xu, Wen-wu; Malola, Sami (Wiley, 2021)A brand new alkynylated cluster [Au 13 Ag 16 (C 10 H 6 NO) 24 ] 3- is prepared by NaBH 4 mediated reduction method. The AuAg clusters are confirmed by various sophisticated characterization techniques. It manifested the ...