Analysis of the plasmonic excitations in assemblies of three-dimensional electron clusters
Abstract
In the quest to built novel metamaterials with unique optical properties, three-dimensional assemblies of metal clusters and nanoparticles are gathering significant attention. Organized geometries, such as tetrahedra and icosahedra, can be built, for example, by using DNA strands or virus capsids as templates. Here we use the jellium model and time-dependent density functional theory to study the plasmonic resonances in different arrangements of eight-electron clusters from the electronic perspective. A charge transfer ratio index based on the induced transition densities is used to quantify the charge transfer nature of the excitations at different energies. We vary the size, shape, and intercluster separation, building systems of four-cluster tetrahedra, 12-cluster icosahedra and cuboctahedra, and 20-cluster dodecahedra. All the studied systems are found to have charge transfer plasmon-type excitations at low energies. Analysis of the electron-hole transitions contributing to the transition dipole moment is further used to characterize these excitations, showing that they have significant screening contributions unlike the higher-energy excitations. The understanding gained for the optical response of these simple model systems can help in interpreting the properties of real, complex cluster systems.
Main Authors
Format
Articles
Research article
Published
2020
Series
Subjects
Publication in research information system
Publisher
American Physical Society (APS)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202012036892Use this for linking
Review status
Peer reviewed
ISSN
2469-9950
DOI
https://doi.org/10.1103/physrevb.102.195433
Language
English
Published in
Physical Review B
Citation
- Selenius, E., Malola, S., & Häkkinen, H. (2020). Analysis of the plasmonic excitations in assemblies of three-dimensional electron clusters. Physical Review B, 102(19), Article 195433. https://doi.org/10.1103/physrevb.102.195433
Funder(s)
Research Council of Finland
Research Council of Finland
Funding program(s)
Research costs of Academy Professor, AoF
Research costs of Academy Professor, AoF
Akatemiaprofessorin tutkimuskulut, SA
Akatemiaprofessorin tutkimuskulut, SA

Additional information about funding
This work was supported by the Academy of Finland (Grants No. 294217 and No. 319208, H.H.’s Academy Professorship), the Emil Aaltonen Foundation, and the Finnish Cultural Foundation (E.S.’s Ph.D. scholarships). The computations were done at the CSC, the Finnish IT Center for Science (Grand Challenge project COUPLES).
Copyright©2020 American Physical Society