Näytä suppeat kuvailutiedot

dc.contributor.authorPeltonen, Teemu Juhani
dc.contributor.authorHeikkilä, Tero T.
dc.date.accessioned2020-04-28T07:43:01Z
dc.date.available2020-04-28T07:43:01Z
dc.date.issued2020
dc.identifier.citationPeltonen, T. J., & Heikkilä, T. T. (2020). Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition. <i>Journal of Physics: Condensed Matter</i>, <i>32</i>(36), Article 365603. <a href="https://doi.org/10.1088/1361-648X/ab8b9d" target="_blank">https://doi.org/10.1088/1361-648X/ab8b9d</a>
dc.identifier.otherCONVID_35307110
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68731
dc.description.abstractIn the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and s-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii–Kosterlitz–Thouless (BKT) transition temperature T BKT to determine the true transition point. By numerically solving the self-consistency equation, we find a strongly inhomogeneous superconducting order parameter, similarly to twisted bilayer graphene. In the flat-band regime the order parameter magnitude, critical chemical potential, critical temperature, superfluid weight, and BKT transition temperature are all approximately linear in the interaction strength, which suggests that high-temperature superconductivity might be feasible in this system. We especially show that by using realistic strain strengths T BKT can be made much larger than in twisted bilayer graphene, if using similar interaction strengths. We also calculate properties such as the local density of states that could serve as experimental fingerprints for the presented model.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherInstitute of physics
dc.relation.ispartofseriesJournal of Physics: Condensed Matter
dc.rightsCC BY-NC-ND 3.0
dc.subject.otherBCS theory
dc.subject.otherflat bands
dc.subject.othergraphene
dc.subject.otherstrain engineering
dc.subject.othersuperconductivity
dc.titleFlat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202004282935
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0953-8984
dc.relation.numberinseries36
dc.relation.volume32
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 IOP Publishing Ltd.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber317118
dc.subject.ysosuprajohtavuus
dc.subject.ysografeeni
dc.subject.ysonanorakenteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p24483
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/3.0/
dc.relation.doi10.1088/1361-648X/ab8b9d
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationT.J.P. acknowledges funding from the Emil Aaltonen Foundation and T.T.H. from the Academy of Finland via its project number 317118. We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 3.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 3.0