dc.contributor.author | Illman, Mia | |
dc.contributor.author | Laaksonen, Kristina | |
dc.contributor.author | Liljeström, Mia | |
dc.contributor.author | Jousmäki, Veikko | |
dc.contributor.author | Piitulainen, Harri | |
dc.contributor.author | Fross, Nina | |
dc.date.accessioned | 2020-04-27T09:57:52Z | |
dc.date.available | 2020-04-27T09:57:52Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Illman, M., Laaksonen, K., Liljeström, M., Jousmäki, V., Piitulainen, H., & Fross, N. (2020). Comparing MEG and EEG in detecting the ~20-Hz rhythm modulation to tactile and proprioceptive stimulation. <i>NeuroImage</i>, <i>215</i>, Article 116804. <a href="https://doi.org/10.1016/j.neuroimage.2020.116804" target="_blank">https://doi.org/10.1016/j.neuroimage.2020.116804</a> | |
dc.identifier.other | CONVID_35298489 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/68711 | |
dc.description.abstract | Modulation of the ~20-Hz brain rhythm has been used to evaluate the functional state of the sensorimotor cortex both in healthy subjects and patients, such as stroke patients. The ~20-Hz brain rhythm can be detected by both magnetoencephalography (MEG) and electroencephalography (EEG), but the comparability of these methods has not been evaluated. Here, we compare these two methods in the evaluating of ~20-Hz activity modulation to somatosensory stimuli.
Rhythmic ~20-Hz activity during separate tactile and proprioceptive stimulation of the right and left index finger was recorded simultaneously with MEG and EEG in twenty-four healthy participants.
Both tactile and proprioceptive stimulus produced a clear suppression at 300–350 ms followed by a subsequent rebound at 700–900 ms after stimulus onset, detected at similar latencies both with MEG and EEG. The relative amplitudes of suppression and rebound correlated strongly between MEG and EEG recordings. However, the relative strength of suppression and rebound in the contralateral hemisphere (with respect to the stimulated hand) was significantly stronger in MEG than in EEG recordings.
Our results indicate that MEG recordings produced signals with higher signal-to-noise ratio than EEG, favoring MEG as an optimal tool for studies evaluating sensorimotor cortical functions. However, the strong correlation between MEG and EEG results encourages the use of EEG when translating studies to clinical practice. The clear advantage of EEG is the availability of the method in hospitals and bed-side measurements at the acute phase. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | NeuroImage | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | beta rebound | |
dc.subject.other | beta rhythm | |
dc.subject.other | beta suppression | |
dc.subject.other | passive movement | |
dc.subject.other | sensorimotor cortex | |
dc.subject.other | tactile stimulation | |
dc.title | Comparing MEG and EEG in detecting the ~20-Hz rhythm modulation to tactile and proprioceptive stimulation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202004272913 | |
dc.contributor.laitos | Liikuntatieteellinen tiedekunta | fi |
dc.contributor.laitos | Faculty of Sport and Health Sciences | en |
dc.contributor.oppiaine | Monitieteinen aivotutkimuskeskus | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Centre for Interdisciplinary Brain Research | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1053-8119 | |
dc.relation.volume | 215 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 The Authors. Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 327288 | |
dc.relation.grantnumber | 326988 | |
dc.subject.yso | tuntoaisti | |
dc.subject.yso | stimulointi | |
dc.subject.yso | liikeaisti | |
dc.subject.yso | MEG | |
dc.subject.yso | EEG | |
dc.subject.yso | motoriikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3330 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20809 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23334 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3329 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3328 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p496 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.neuroimage.2020.116804 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | This work was supported by the SalWe Research Program for Mind and Body, Tekes – the Finnish Funding Agency for Technology and Innovation [grant number 1104/10]; Academy of Finland [grant numbers 296240, 307250, 326988, 327288]; Aalto NeuroImaging, Aalto Brain Centre and Jane and Aatos Erkko Foundation. | |
dc.type.okm | A1 | |