Näytä suppeat kuvailutiedot

dc.contributor.authorMattelaer, Felix
dc.contributor.authorVan Daele, Michiel
dc.contributor.authorMinjauw, Matthias M.
dc.contributor.authorNisula, Mikko
dc.contributor.authorElliott, Simon D.
dc.contributor.authorSajavaara, Timo
dc.contributor.authorDendooven, Jolien
dc.contributor.authorDetavernier, Christophe
dc.date.accessioned2020-04-27T06:06:34Z
dc.date.available2020-04-27T06:06:34Z
dc.date.issued2020
dc.identifier.citationMattelaer, F., Van Daele, M., Minjauw, M. M., Nisula, M., Elliott, S. D., Sajavaara, T., Dendooven, J., & Detavernier, C. (2020). Atomic layer deposition of localised boron- and hydrogen-doped aluminium oxide using trimethyl borate as a dopant precursor. <i>Chemistry of Materials</i>, <i>32</i>(10), 4152-4165. <a href="https://doi.org/10.1021/acs.chemmater.9b04967" target="_blank">https://doi.org/10.1021/acs.chemmater.9b04967</a>
dc.identifier.otherCONVID_35302978
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68690
dc.description.abstractAtomic layer deposition (ALD) of boron-containing films has been mainly studied for use in 2D materials and for B-doping of Si. Furthermore, lithium-containing borates show great promise as solid electrolyte coatings for enhanced energy storage. In this work, we examine trimethyl borate (TMB) and triethyl borate (TEB) in combination with O2 plasma as precursors for ALD of B-containing films, targeting the growth of B2O3. It is found that films grown from TEB contain no boron. Further work with TMB as a boron-containing precursor showed promising initial growth on a SiO2 or Al2O3 surface, but a rapid decrease of the growth rate during subsequent ALD cycles indicating surface inhibition during continued growth. DFT cluster calculations in combination with in-situ FTIR demonstrated that because of its weak Lewis acidity, the TMB molecule is found to adsorb via hydrogen-bonding to B-OH covered surfaces, without elimination of ligands, so that it is ubsequently removed in the plasmapulse and does not contribute to growth. The growth could be maintained in a mixedprocess, by reactivating the surface through single exposures to trimethyl aluminum(TMA) and oxygen plasma and thus resetting the surface to Al-OH, on which TMB chemisorption is energetically more favourable. Surprisingly, this process did not result in B2O3 (or Al-doped B2O3) films, but instead in B- and H-doped Al2O3 films. Moreover, rather than uniform boron doping, the Al2O3 films grown from this process contain a large amount of hydrogen, up to 17At% under certain processing conditions, and displayed non-uniform depth distributions of boron and hydrogen with a degree of control over the doping distribution based on the deposition conditions. Finally, the mechanism for the atypical growth mode is proposed based on in-situ FTIR and ellipsometry measurements and density functional theory calculations, and was attributed to sub-surface reactions of the TMA with the B-OH films grown by TMB-O2 plasma.This makes the process an interesting, albeit atypical, ALD process that allows for a quasi-continuous tuning of the B-concentration in the top region of high-purity Al2O3 films.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesChemistry of Materials
dc.rightsIn Copyright
dc.subject.otheratomic layer deposition
dc.subject.otherelectrolyte coatings
dc.subject.otherenergy storage
dc.subject.othertrimethyl borate
dc.subject.othertiethyl borate
dc.titleAtomic layer deposition of localised boron- and hydrogen-doped aluminium oxide using trimethyl borate as a dopant precursor
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202004272903
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.relation.isbn0897-4756
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange4152-4165
dc.relation.issn0897-4756
dc.relation.numberinseries10
dc.relation.volume32
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysoatomikerroskasvatus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27468
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1021/acs.chemmater.9b04967
jyx.fundinginformationThe authors acknowledge FWO projects (grant number 1S68518N, GO87418N) for financial support. J. D. and M.M. acknowledge FWO-Vlaanderen for postdoctoral fellowships
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright