Show simple item record

dc.contributor.authorClaesson, Elin
dc.contributor.authorWahlgren, Weixiao Yuan
dc.contributor.authorTakala, Heikki
dc.contributor.authorPandey, Suraj
dc.contributor.authorCastillon, Leticia
dc.contributor.authorKuznetsova, Valentyna
dc.contributor.authorHenry, Léocadie
dc.contributor.authorPanman, Matthijs
dc.contributor.authorCarrillo, Melissa
dc.contributor.authorKübel, Joachim
dc.contributor.authorNanekar, Rahul
dc.contributor.authorIsaksson, Linnéa
dc.contributor.authorNimmrich, Amke
dc.contributor.authorCellini, Andrea
dc.contributor.authorMorozov, Dmitry
dc.contributor.authorMaj, Michał
dc.contributor.authorKurttila, Moona
dc.contributor.authorBosman, Robert
dc.contributor.authorNango, Eriko
dc.contributor.authorTanaka, Rie
dc.contributor.authorTanaka, Tomoyuki
dc.contributor.authorFangjia, Luo
dc.contributor.authorIwata, So
dc.contributor.authorOwada, Shigeki
dc.contributor.authorMoffat, Keith
dc.contributor.authorGroenhof, Gerrit
dc.contributor.authorStojkovic, Emina A.
dc.contributor.authorIhalainen, Janne A.
dc.contributor.authorSchmidt, Marius
dc.contributor.authorWestenhof, Sebastian
dc.date.accessioned2020-04-24T10:54:18Z
dc.date.available2020-04-24T10:54:18Z
dc.date.issued2020
dc.identifier.citationClaesson, E., Wahlgren, W. Y., Takala, H., Pandey, S., Castillon, L., Kuznetsova, V., Henry, L., Panman, M., Carrillo, M., Kübel, J., Nanekar, R., Isaksson, L., Nimmrich, A., Cellini, A., Morozov, D., Maj, M., Kurttila, M., Bosman, R., Nango, E., . . . Westenhof, S. (2020). The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. <i>eLife</i>, <i>9</i>, Article e53514. <a href="https://doi.org/10.7554/eLife.53514" target="_blank">https://doi.org/10.7554/eLife.53514</a>
dc.identifier.otherCONVID_35140164
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68677
dc.description.abstractPhytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signalling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publishereLife Sciences Publications
dc.relation.ispartofserieseLife
dc.rightsCC BY 4.0
dc.titleThe primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202004242890
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2050-084X
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© Claesson et al
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber296135
dc.subject.ysovalokemia
dc.subject.ysoproteiinit
dc.subject.ysoröntgenkristallografia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7201
jyx.subject.urihttp://www.yso.fi/onto/yso/p4332
jyx.subject.urihttp://www.yso.fi/onto/yso/p29058
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.7554/eLife.53514
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe experiments at SACLA were performed at BL3 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2018A8055 and 2019A8007). S.W. acknowledges the European Research Council for support (grant number: 279944). This work was supported by Academy of Finland grants 285461 and 296135 (H. T. and J.A.I., respectively) and Jane and Aatos Erkko foundation (J.A.I.). This research is partially supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from Japan Agency for Medical Research and Development (AMED). We thank Dr. Takanori Nakane for assistance with data processing during the beamtime and Heli Lehtivuori for the spectroscopic measurements with the microcrystals. This work was supported by NSF Science and Technology Centers grant NSF-1231306 (“Biology with X-ray Lasers”), the National Science Foundation (NSF)-MCBRUI 1413360 and NSF-MCB-EAGER 1839513 Research Grants to E.A.S. This work has been done as part of the BioExcel CoE (www.bioexcel.eu), a project funded by the European Union contracts H2020-INFRAEDI-02-2018-823830 and H2020-EINFRA-2015-1-675728.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0