Show simple item record

dc.contributor.authordel Teso, Félix
dc.contributor.authorManfredi, Juan J.
dc.contributor.authorParviainen, Mikko
dc.date.accessioned2020-04-17T04:38:58Z
dc.date.available2020-04-17T04:38:58Z
dc.date.issued2022
dc.identifier.citationdel Teso, F., Manfredi, J. J., & Parviainen, M. (2022). Convergence of dynamic programming principles for the p-Laplacian. <i>Advances in Calculus of Variations</i>, <i>15</i>(2), 191-212. <a href="https://doi.org/10.1515/acv-2019-0043" target="_blank">https://doi.org/10.1515/acv-2019-0043</a>
dc.identifier.otherCONVID_35081270
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68568
dc.description.abstractWe provide a unified strategy to show that solutions of dynamic programming principles associated to the p-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously known cases for continuous and discrete dynamic programming principles, provides new results, and gives a convergence proof free of probability arguments.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherDe Gruyter
dc.relation.ispartofseriesAdvances in Calculus of Variations
dc.rightsIn Copyright
dc.subject.otherDirichlet problem
dc.subject.otherdynamic programming principle
dc.subject.otherdiscrete approximations
dc.subject.otherasymptotic mean value properties
dc.subject.otherconvergence
dc.subject.othermonotone approximations
dc.subject.otherviscosity solution
dc.subject.othergeneralized viscosity solution
dc.subject.otherequivalent notions of solutions
dc.subject.othernumerical methods
dc.titleConvergence of dynamic programming principles for the p-Laplacian
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202004172791
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange191-212
dc.relation.issn1864-8258
dc.relation.numberinseries2
dc.relation.volume15
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Walter de Gruyter GmbH, Berlin/Boston
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber298641
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysoapproksimointi
dc.subject.ysonumeeriset menetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
jyx.subject.urihttp://www.yso.fi/onto/yso/p6588
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1515/acv-2019-0043
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe first author is supported by the Toppforsk (research excellence) project Waves and Nonlinear Phenomena (WaNP), grant no. 250070 from the Research Council of Norway, and by the grant PGC2018-094522-B-I00 from the MICINN of the Spanish Government. The third author is supported by the Academy of Finland project no. 298641.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright