Acclimation capacity and rate change through life in the zooplankton Daphnia
Burton, T., Lakka, H.-K., & Einum, S. (2020). Acclimation capacity and rate change through life in the zooplankton Daphnia. Proceedings of the Royal Society B : Biological Sciences, 287(1924), Article 20200189. https://doi.org/10.1098/rspb.2020.0189
Julkaistu sarjassa
Proceedings of the Royal Society B : Biological SciencesPäivämäärä
2020Tekijänoikeudet
© 2020 The Authors
When a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the process of acclimation. While acclimation has been studied for more than half a century, global environmental change has stimulated renewed interest in quantifying variation in the rate and capacity with which this process occurs, particularly among ectothermic organisms. Yet, despite the likely ecological importance of acclimation capacity and rate, how these traits change throughout life among members of the same species is largely unstudied. Here we investigate these relationships by measuring the acute heat tolerance of the clonally reproducing zooplankter Daphnia magna of different size/age and acclimation status. The heat tolerance of individuals completely acclimated to relatively warm (28°C) or cool (17°C) temperatures diverged during development, indicating that older, larger individuals had a greater capacity to increase heat tolerance. However, when cool acclimated individuals were briefly exposed to the warm temperature (i.e. were ‘heat-hardened'), it was younger, smaller animals with less capacity to acclimate that were able to do so more rapidly because they obtained or came closer to obtaining complete acclimation of heat tolerance. Our results illustrate that within a species, individuals can differ substantially in how rapidly and by how much they can respond to environmental change. We urge greater investigation of the intraspecific relationship between acclimation and development along with further consideration of the factors that might contribute to these enigmatic patterns of phenotypic variation.
...
Julkaisija
The Royal Society PublishingISSN Hae Julkaisufoorumista
0962-8452Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35154095
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by an H2020 Marie Skłodowska-Curie Actions International Fellowship (grant no. MSCA-IF 658530) and funding from the Research Council of Norway (Klimaforsk 244046, Centre of Excellence 223257/F50).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Measuring phenotypes in fluctuating environments
Burton, Tim; Lakka, Hanna‐Kaisa; Einum, Sigurd (Wiley-Blackwell, 2020)Despite considerable theoretical interest in how the evolution of phenotypic plasticity should be shaped by environmental variability and stochasticity, how individuals actually respond to these aspects of the environment ... -
Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches
Manenti, Tommaso; Kjærsgaard, Anders; Munk Schou, Toke; Pertoldi, Cino; Moghadam, Neda N.; Loeschcke, Volker (MDPI AG, 2021)Temperature has profound effects on biochemical processes as suggested by the extensive variation in performance of organisms across temperatures. Nonetheless, the use of fluctuating temperature (FT) regimes in laboratory ... -
Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity
Johansson, F.; Watts, P. C.; Sniegula, S.; Berger, D. (John Wiley & Sons, 2021)Phenotypic plasticity can either hinder or promote adaptation to novel environments. Recent studies that have quantified alignments between plasticity, genetic variation and divergence propose that such alignments may ... -
Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient
Mausbach, Jelena; Laurila, Anssi; Räsänen, Katja (Biomed Central, 2022)Background Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological ... -
Evolution of anticipatory effects mediated by epigenetic changes
Kronholm, Ilkka (Oxford University Press, 2022)Anticipatory effects mediated by epigenetic changes occur when parents modify the phenotype of their offspring by making epigenetic changes in their gametes guided by information from an environmental cue. To investigate ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.