Measuring phenotypes in fluctuating environments
Burton, T., Lakka, H., & Einum, S. (2020). Measuring phenotypes in fluctuating environments. Functional Ecology, 34(3), 606-615. https://doi.org/10.1111/1365-2435.13501
Published in
Functional EcologyDate
2020Copyright
© 2019 British Ecological Society
Despite considerable theoretical interest in how the evolution of phenotypic plasticity should be shaped by environmental variability and stochasticity, how individuals actually respond to these aspects of the environment within their own lifetimes remains unclear.
We propose that this understanding has been hampered by experimental approaches that expose organisms to fluctuating environments (typically treatments where fluctuations in the environment are cyclical vs. erratic) for a pre‐determined duration, while ensuring that the mean environment over that the entire exposure period is invariable. This approach implicitly assumes that responses to the mean and variance/predictability in the environment occur over the same time scale. If this assumption is false, one potential outcome is that phenotypic differences among the treatment groups might arise in response to differences in the mean environment that are present over shorter time periods among those same treatment groups.
We illustrate an experimental design that (i) creates variation in the level of environmental predictability, (ii) allows for estimation of the time scale over which the phenotypic response to the mean environment occurs, and (iii) permits statistical estimation of the effect of predictability in the environmental variable of interest while controlling for any effect of the mean environment over the relevant temporal scale.
Using the clonally reproducing zooplankton species Daphnia magna, we test for within‐generation plasticity in the ability to tolerate high temperature following exposure to multiple temperature treatments with the same overall mean, but where the pattern of fluctuations differed among them. This approach revealed that heat tolerance in Daphnia was not influenced by variability in temperature per se nor the predictability of fluctuations in temperature but adjusted in response to the mean temperature they experienced 24 hr prior to measurement.
Our results suggest that conclusions arising from studies that employ a single manipulation of environmental predictability and which cannot consider such potentially confounding effects may be premature.
...


Publisher
Wiley-BlackwellISSN Search the Publication Forum
0269-8463Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/33751011
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by an H2020 Marie Skłodowska-Curie Actions International Fellowship (MSCA-IF 658530) and funding from Norges Forskningsråd (Klimaforsk 244046). We declare that we have no competing interests.License
Related items
Showing items with similar title or keywords.
-
Acclimation capacity and rate change through life in the zooplankton Daphnia
Burton, Tim; Lakka, Hanna-Kaisa; Einum, Sigurd (The Royal Society Publishing, 2020)When a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the ... -
Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches
Manenti, Tommaso; Kjærsgaard, Anders; Munk Schou, Toke; Pertoldi, Cino; Moghadam, Neda N.; Loeschcke, Volker (MDPI AG, 2021)Temperature has profound effects on biochemical processes as suggested by the extensive variation in performance of organisms across temperatures. Nonetheless, the use of fluctuating temperature (FT) regimes in laboratory ... -
The evolution of temperature tolerance and invasiveness in a fluctuating thermal environment
Saarinen, Kati (University of Jyväskylä, 2016)The consequences of the climate change on species are still uncertain, despite of intensive research. Currently, rising temperature is not the only concern, since the climate change scenarios also predict increases in ... -
Evolution of anticipatory effects mediated by epigenetic changes
Kronholm, Ilkka (Oxford University Press, 2022)Anticipatory effects mediated by epigenetic changes occur when parents modify the phenotype of their offspring by making epigenetic changes in their gametes guided by information from an environmental cue. To investigate ... -
Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity
Johansson, F.; Watts, P. C.; Sniegula, S.; Berger, D. (John Wiley & Sons, 2021)Phenotypic plasticity can either hinder or promote adaptation to novel environments. Recent studies that have quantified alignments between plasticity, genetic variation and divergence propose that such alignments may ...