Evolution of anticipatory effects mediated by epigenetic changes
Kronholm, I. (2022). Evolution of anticipatory effects mediated by epigenetic changes. Environmental Epigenetics, 8(1), Article dvac007. https://doi.org/10.1093/eep/dvac007
Julkaistu sarjassa
Environmental EpigeneticsTekijät
Päivämäärä
2022Oppiaine
Biologisten vuorovaikutusten huippututkimusyksikköEkologia ja evoluutiobiologiaCentre of Excellence in Biological Interactions ResearchEcology and Evolutionary BiologyTekijänoikeudet
© 2022 the Authors
Anticipatory effects mediated by epigenetic changes occur when parents modify the phenotype of their offspring by making epigenetic changes in their gametes guided by information from an environmental cue. To investigate when do anticipatory effects mediated by epigenetic changes evolve in a fluctuating environment, I use an individual based simulation model with explicit genetic architecture. The model allows for the population to respond to environmental changes by evolving plasticity, bet-hedging, or by tracking the environment with genetic adaptation, in addition to the evolution of anticipatory effects. The results show that anticipatory effects evolve when the environmental cue provides reliable information about the environment and the environment changes at intermediate rates, provided that fitness costs of anticipatory effects are rather low. Moreover, evolution of anticipatory effects is quite robust to different genetic architectures when reliability of the environmental cue is high. Anticipatory effects always give smaller fitness benefits than within generation plasticity, suggesting a possible reason for generally small observed anticipatory effects in empirical studies.
...
Julkaisija
Oxford University PressISSN Hae Julkaisufoorumista
2058-5888Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/117397323
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SALisätietoja rahoituksesta
This study was funded by an Academy of Finland Research Fellowship (no. 321584).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Early-life environmental effects on birds : epigenetics and microbiome as mechanisms underlying long-lasting phenotypic changes
Ruuskanen, Suvi (The Company of Biologists, 2024)Although the long-lasting effects of variation in early-life environment have been well documented across organisms, the underlying causal mechanisms are only recently starting to be unraveled. Yet understanding the ... -
Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity
Johansson, F.; Watts, P. C.; Sniegula, S.; Berger, D. (John Wiley & Sons, 2021)Phenotypic plasticity can either hinder or promote adaptation to novel environments. Recent studies that have quantified alignments between plasticity, genetic variation and divergence propose that such alignments may ... -
Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient
Mausbach, Jelena; Laurila, Anssi; Räsänen, Katja (Biomed Central, 2022)Background Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological ... -
Measuring phenotypes in fluctuating environments
Burton, Tim; Lakka, Hanna‐Kaisa; Einum, Sigurd (Wiley-Blackwell, 2020)Despite considerable theoretical interest in how the evolution of phenotypic plasticity should be shaped by environmental variability and stochasticity, how individuals actually respond to these aspects of the environment ... -
Mixed support for an alignment between phenotypic plasticity and genetic differentiation in damselfly wing shape
Johansson, Frank; Berger, David; Outomuro, David; Sniegula, Szymon; Tunon, Meagan; Watts, Phillip C.; Rohner, Patrick Thomas (Wiley-Blackwell, 2023)The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.