Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene
Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T., & Törmä, P. (2020). Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Physical Review B, 101(6), Article 060505. https://doi.org/10.1103/PhysRevB.101.060505
Published in
Physical Review BDate
2020Copyright
© 2020 American Physical Society
We study superconductivity of twisted bilayer graphene with local and nonlocal attractive interactions. We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for microscopic tight-binding and low-energy continuum models. We predict qualitative differences between local and nonlocal interaction schemes which could be distinguished experimentally. In the flat-band limit where the pair potential exceeds the band width we show that the superfluid weight and BKT temperature are determined by multiband processes and quantum geometry of the band.
Publisher
American Physical SocietyISSN Search the Publication Forum
2469-9950Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/35110317
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
This work was supported by the Academy of Finland underProjects No. 303351, No. 307419, No. 317118, and No.318987, and by the European Research Council (ERC-2013-AdG-340748-CODE). L.L. acknowledges the Aalto Centrefor Quantum Engineering for support. A.J. acknowledgessupport from the Vilho, Yrjö, and Kalle Väisälä Foundation.Computing resources were provided by Triton cluster at AaltoUniversity. We acknowledge grants of computer capacity fromthe Finnish Grid and Cloud Infrastructure (persistent identifierurn:nbn:fi:research-infras-2016072533) ...License
Related items
Showing items with similar title or keywords.
-
Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition
Peltonen, Teemu Juhani; Heikkilä, Tero T. (Institute of physics, 2020)In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and s-wave superconducting state properties of periodically strained ... -
Metal-insulator transition effect on Graphene/VO2 heterostructure via temperature-dependent Raman spectroscopy and resistivity measurement
Lerttraikul, Kittitat; Rattanasakuldilok, Wirunchana; Pakornchote, Teerachote; Bovornratanaraks, Thiti; Klanurak, Illias; Taychatanapat, Thiti; Srathongsian, Ladda; Seriwatanachai, Chaowaphat; Kanjanaboos, Pongsakorn; Chatraphorn, Sojiphong; Kittiwatanakul, Salinporn (Nature Publishing Group, 2024)High-quality VO2 flms were fabricated on top of c-Al2O3 substrates using Reactive Bias Target Ion Beam Deposition (RBTIBD) and the studies of graphene/VO2 heterostructure were conducted. Graphene layers were placed on top ... -
Topological properties of mono- and multilayer graphene, flat bands and surface superconductivity
Moisala, Terhi (2015)Tutustun Pro Gradu -työssäni topologisiin materiaaleihin ja perehdyn grafeenin sekä romboedrisen grafiitin ominaisuuksiin tästä näkökulmasta. Erityisesti tutkin grafeenin alihilasymmetrian rikkoutumisen vaikutuksia grafiitissa ... -
Mean-field theory for superconductivity in twisted bilayer graphene
Peltonen, Teemu; Ojajärvi, Risto; Heikkilä, Tero (American Physical Society, 2018)Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field s-wave superconducting ... -
Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors
Garaud, Julien; Corticelli, Alberto; Silaev, Mikhail; Babaev, Egor (American Physical Society, 2018)In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band ...