The Calderón problem for the fractional Schrödinger equation
Ghosh, T., Salo, M., & Uhlmann, G. (2020). The Calderón problem for the fractional Schrödinger equation. Analysis and PDE, 13(2), 455-475. https://doi.org/10.2140/apde.2020.13.455
Published in
Analysis and PDEDate
2020Discipline
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsCopyright
© 2020 Mathematical Sciences Publishers
We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension ≥1 and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calderón problem.
Publisher
Mathematical Sciences PublishersISSN Search the Publication Forum
2157-5045Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/35078766
Metadata
Show full item recordCollections
Related funder(s)
Research Council of Finland; European CommissionFunding program(s)
Centre of Excellence, AoF; Academy Project, AoF; FP7 (EU's 7th Framework Programme); ERC Consolidator Grant
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
Salo was partly supported by the Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963) and by the European Research Council under FP7/2007-2013 (ERC StG 307023) and Horizon 2020 (ERC CoG 770924). Uhlmann was partly supported by the NSF, a Si-Yuan Professorship at IAS, HKUST, and a FiDiPro at the University of Helsinki.License
Related items
Showing items with similar title or keywords.
-
Quantitative approximation properties for the fractional heat equation
Rüland, Angkana; Salo, Mikko (American Institute of Mathematical Sciences, 2020)In this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
Kow, Pu-Zhao; Lin, Yi-Hsuan; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2022)We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ...