Näytä suppeat kuvailutiedot

dc.contributor.authorPuurtinen, T. A.
dc.contributor.authorRostem, K.
dc.contributor.authorde Visser, P. J.
dc.contributor.authorMaasilta, I. J.
dc.date.accessioned2020-03-19T06:22:42Z
dc.date.available2020-03-19T06:22:42Z
dc.date.issued2020
dc.identifier.citationPuurtinen, T. A., Rostem, K., de Visser, P. J., & Maasilta, I. J. (2020). A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors. <i>Journal of Low Temperature Physics</i>, <i>199</i>(3-4), 577-584. <a href="https://doi.org/10.1007/s10909-020-02423-4" target="_blank">https://doi.org/10.1007/s10909-020-02423-4</a>
dc.identifier.otherCONVID_35056101
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68237
dc.description.abstractA nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1-μm-wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high-frequency phonon modes. The phononic crystal is narrow enough for low-frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulation over a 40 dB attenuation in transmitted power is found for the crystal, which is estimated to give a lifetime enhancement of nearly two orders of magnitude.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Low Temperature Physics
dc.rightsCC BY 4.0
dc.subject.otherphononic crystal
dc.subject.otherkinetic inductance detector
dc.subject.otherfinite element method
dc.subject.otherphonon scattering
dc.titleA Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202003192462
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange577–584
dc.relation.issn0022-2291
dc.relation.numberinseries3-4
dc.relation.volume199
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber298667
dc.subject.ysofononit
dc.subject.ysolämmön johtuminen
dc.subject.ysoelementtimenetelmä
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28089
jyx.subject.urihttp://www.yso.fi/onto/yso/p19905
jyx.subject.urihttp://www.yso.fi/onto/yso/p24565
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10909-020-02423-4
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationOpen access funding provided by University of Jyväskylä. This study was supported by the Academy of Finland Project Number 298667. K. Rostem gratefully acknowledges financial support from a NASA Astrophysics Research and Analysis Grant (NNX17AH83G). P. J. de Visser was financially supported by the Netherlands Organisation for Scientific Research NWO (Veni Grant 639.041.750).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0