dc.contributor.author | Puurtinen, T. A. | |
dc.contributor.author | Rostem, K. | |
dc.contributor.author | de Visser, P. J. | |
dc.contributor.author | Maasilta, I. J. | |
dc.date.accessioned | 2020-03-19T06:22:42Z | |
dc.date.available | 2020-03-19T06:22:42Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Puurtinen, T. A., Rostem, K., de Visser, P. J., & Maasilta, I. J. (2020). A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors. <i>Journal of Low Temperature Physics</i>, <i>199</i>(3-4), 577-584. <a href="https://doi.org/10.1007/s10909-020-02423-4" target="_blank">https://doi.org/10.1007/s10909-020-02423-4</a> | |
dc.identifier.other | CONVID_35056101 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/68237 | |
dc.description.abstract | A nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1-μm-wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high-frequency phonon modes. The phononic crystal is narrow enough for low-frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulation over a 40 dB attenuation in transmitted power is found for the crystal, which is estimated to give a lifetime enhancement of nearly two orders of magnitude. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Low Temperature Physics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | phononic crystal | |
dc.subject.other | kinetic inductance detector | |
dc.subject.other | finite element method | |
dc.subject.other | phonon scattering | |
dc.title | A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202003192462 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 577–584 | |
dc.relation.issn | 0022-2291 | |
dc.relation.numberinseries | 3-4 | |
dc.relation.volume | 199 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 298667 | |
dc.subject.yso | fononit | |
dc.subject.yso | lämmön johtuminen | |
dc.subject.yso | elementtimenetelmä | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28089 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19905 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24565 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s10909-020-02423-4 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | Open access funding provided by University of Jyväskylä. This study was supported by the Academy of Finland Project Number 298667. K. Rostem gratefully acknowledges financial support from a NASA Astrophysics Research and Analysis Grant (NNX17AH83G). P. J. de Visser was financially supported by the Netherlands Organisation for Scientific Research NWO (Veni Grant 639.041.750). | |
dc.type.okm | A1 | |