Näytä suppeat kuvailutiedot

dc.contributor.authorMailman, Aaron
dc.contributor.authorRobertson, Craig M.
dc.contributor.authorWinter, Stephen M.
dc.contributor.authorDube, Paul A.
dc.contributor.authorOakley, Richard T.
dc.date.accessioned2020-02-19T11:56:50Z
dc.date.available2020-04-26T21:35:08Z
dc.date.issued2019
dc.identifier.citationMailman, A., Robertson, C. M., Winter, S. M., Dube, P. A., & Oakley, R. T. (2019). The Importance of Electronic Dimensionality in Multiorbital Radical Conductors. <i>Inorganic Chemistry</i>, <i>58</i>(9), 6495-6506. <a href="https://doi.org/10.1021/acs.inorgchem.9b00691" target="_blank">https://doi.org/10.1021/acs.inorgchem.9b00691</a>
dc.identifier.otherCONVID_30544608
dc.identifier.otherTUTKAID_81298
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67892
dc.description.abstractThe exceptional performance of oxobenzene-bridged bis-1,2,3-dithiazolyls 6 as single-component neutral radical conductors arises from the presence of a low-lying π-lowest unoccupied molecular orbital, which reduces the potential barrier to charge transport and increases the kinetic stabilization energy of the metallic state. As part of ongoing efforts to modify the solid-state structures and transport properties of these so-called multiorbital materials, we report the preparation and characterization of the acetoxy, methoxy, and thiomethyl derivatives 6 (R = OAc, OMe, SMe). The crystal structures are based on ribbonlike arrays of radicals laced together by S···N′ and S···O′ secondary bonding interactions. The steric and electronic effects of the exocyclic ligands varies, affording one-dimensional (1D) π-stacked radicals for R = OAc, 1D cofacial dimer π-stacks for R = SMe, and a pseudo two-dimensional (2D) brick-wall arrangement for R = OMe. Variable-temperature magnetic and conductivity measurements reveal strong antiferromagnetic interactions and Mott insulating behavior for the two radical-based structures (R = OAc, OMe), with lower room-temperature conductivities (σRT ≈ 1 × 10–4 and ∼1 × 10–3 S cm–1, respectively) and higher thermal activation energies (Eact = 0.24 and 0.21 eV, respectively) than found for the ideal 2D brick-wall structure of 6 (R = F), where σRT ≈ 1 × 10–2 S cm–1 and Eact = 0.10 eV. The performance of R = OMe, OAc relative to that of R = F, is consistent with the results of density functional theory band electronic structure calculations, which indicate a lower kinetic stabilization energy of the putative metallic state arising from their reduced electronic dimensionality.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesInorganic Chemistry
dc.rightsIn Copyright
dc.subject.otherelectronic dimensionality
dc.subject.othermultiorbital radical conductors
dc.titleThe Importance of Electronic Dimensionality in Multiorbital Radical Conductors
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002132060
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2020-02-13T07:15:16Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange6495-6506
dc.relation.issn0020-1669
dc.relation.numberinseries9
dc.relation.volume58
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber289172
dc.relation.grantnumber659123
dc.relation.grantnumber659123
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/659123/EU//
dc.subject.ysovapaat radikaalit
dc.subject.ysosähkönjohtavuus
dc.subject.ysokiteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2983
jyx.subject.urihttp://www.yso.fi/onto/yso/p9399
jyx.subject.urihttp://www.yso.fi/onto/yso/p15440
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1021/acs.inorgchem.9b00691
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramMSCA Marie Skłodowska-Curie Actions, H2020fi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramMSCA Marie Skłodowska-Curie Actions, H2020en
jyx.fundinginformationThis work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERCC), the Univ. of Jyväskylä, the Academy of Finland (Project Nos. 253907 and 289172), and the European Union’s H2020 research and innovations programme (under the Marie Skłodowska-Curie Grant No. 659123). A.M. is grateful for the interest and support of Prof. H. M. Tuononen during this research. We also thank the Diamond Light Source for access to beamline I19.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright