A crystalline radical cation derived from Thiele’s hydrocarbon with redox range beyond 1 V
Loh, Y. K., Vasko, P., McManus, C., Heilmann, A., Myers, W. K., & Aldridge, S. (2021). A crystalline radical cation derived from Thiele’s hydrocarbon with redox range beyond 1 V. Nature Communications, 12, Article 7052. https://doi.org/10.1038/s41467-021-27104-y
Published in
Nature CommunicationsAuthors
Date
2021Discipline
Epäorgaaninen ja analyyttinen kemiaEpäorgaaninen kemiaInorganic and Analytical ChemistryInorganic ChemistryCopyright
© The Author(s) 2021
Thiele’s hydrocarbon occupies a central role as an open-shell platform for new organic materials, however little is known about its redox behaviour. While recent synthetic approaches involving symmetrical carbene substitution of the CPh2 termini yield isolable neutral/dicationic analogues, the intervening radical cations are much more difficult to isolate, due to narrow compatible redox ranges (typically < 0.25 V). Here we show that a hybrid BN/carbene approach allows access to an unsymmetrical analogue of Thiele’s hydrocarbon 1, and that this strategy confers markedly enhanced stability on the radical cation. 1•+ is stable across an exceptionally wide redox range (> 1 V), permitting its isolation in crystalline form. Further single-electron oxidation affords borenium dication 12+, thereby establishing an organoboron redox system fully characterized in all three redox states. We perceive that this strategy can be extended to other transient organic radicals to widen their redox stability window and facilitate their isolation.
...
Publisher
Nature Publishing GroupISSN Search the Publication Forum
2041-1723Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/102340195
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Postdoctoral Researcher, AoFAdditional information about funding
We would like to thank A*STAR (scholarship for Y.K.L.), EPSRC (EP/V036408/1 and EP/L011972/1 for The Centre for Advanced ESR (CAESR); scholarship for C.Mc.M.), the Leverhulme Trust (RP-2018-246), Academy of Finland (project number 314794, P.V.).License
Related items
Showing items with similar title or keywords.
-
Redox-Responsive Host-Guest Chemistry of a Flexible Cage with Naphthalene Walls
Jia, Fei; Schröder, Hendrik V.; Yang, Liu-Pan; von Essen, Carolina; Sobottka, Sebastian; Sarkar, Biprajit; Rissanen, Kari; Jiang, Wei; Schalley, Christoph A. (American Chemical Society, 2020)“Naphthocage”, a naphthalene-based organic cage, reveals very strong binding (up to 1010 M–1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests ... -
Deoxygenative Divergent Synthesis : En Route to Quinic Acid Chirons
Holmstedt, Suvi; George, Lijo; Koivuporras, Alisa; Valkonen, Arto; Candeias, Nuno R. (American Chemical Society (ACS), 2020)The installation of vicinal mesylate and silyl ether groups in a quinic acid derivative generates a system prone for stereoselective borane-catalyzed hydrosilylation through a siloxonium intermediate. The diversification ... -
Synthesis of Polycyclic Indolines utilizing a reduction/cyclization cascade reaction
Zhang, Jingyu; Xia, Wei; Qu, Meilin; Huda, Saskia; Ward, Jas; Rissanen, Kari; Albrecht, Markus (Wiley-VCH Verlag, 2021)Subsequent reduction and dearomatizing cyclization reactions open up an entry into the synthesis of novel N-fused polycyclic indolines. The dearomatizing cyclization as key step of the sequence proceeds well with Cu(OTf)2 ... -
Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)
Kumeda, Tomoaki; Laverdure, Laura; Honkala, Karoliina; Melander, Marko M.; Sakaushi, Ken (Wiley-VCH Verlag, 2023)The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ... -
Experimental and computational studies of unconventional main group compounds : stable radicals and reactive intermediates
Hurmalainen, Juha (University of Jyväskylä, 2017)Ever since their discovery, radicals have intrigued the minds of experimental and theoretical chemists alike. While the vast majority of radicals are transient species, a large number of stable and persistent radicals ...