The geodesic X-ray transform with matrix weights
Paternain, G. B., Salo, M., Uhlmann, G., & Zhou, H. (2019). The geodesic X-ray transform with matrix weights. American Journal of Mathematics, 141(6), 1707-1750. https://doi.org/10.1353/ajm.2019.0045
Julkaistu sarjassa
American Journal of MathematicsPäivämäärä
2019Oppiaine
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsTekijänoikeudet
© 2019 by Johns Hopkins University Press
Consider a compact Riemannian manifold of dimension ≥ 3 with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments based on strictly convex exhaustion functions. As a somewhat striking corollary, we show that these integral geometry problems can be solved on strictly convex manifolds of dimension ≥ 3 having nonnegative sectional curvature (similar results were known earlier in negative sectional curvature). We also apply our methods to solve some inverse problems in quantum state tomography and polarization tomography.
...
Julkaisija
Johns Hopkins University PressISSN Hae Julkaisufoorumista
0002-9327Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34636999
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
EU:n 7. puiteohjelma (FP7); Huippuyksikkörahoitus, SA; Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
Research of the first and fourth authors supported by EPSRC grant EP/M023842/1; research of the second author supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963) and by the European Research Council under FP7/2007-2013 (ERC StG 307023) and Horizon 2020 (ERC CoG 770924); research of the third author supported in part by the NSF. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Geodesic ray transform with matrix weights for piecewise constant functions
Ilmavirta, Joonas; Railo, Jesse (Suomalainen tiedeakatemia, 2020)We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and ... -
Unique Continuation Results for Certain Generalized Ray Transforms of Symmetric Tensor Fields
Agrawal, Divyansh; Krishnan, Venkateswaran P.; Sahoo, Suman Kumar (Springer Science and Business Media LLC, 2022)Let Im denote the Euclidean ray transform acting on compactly supported symmetric m-tensor field distributions f, and I∗m be its formal L2 adjoint. We study a unique continuation result for the operator Nm=I∗mIm. More ... -
On mixed and transverse ray transforms on orientable surfaces
Ilmavirta, Joonas; Mönkkönen, Keijo; Railo, Jesse (Walter de Gruyter GmbH, 2023)The geodesic ray transform, the mixed ray transform and the transverse ray transform of a tensor field on a surface can all be seen as what we call mixing ray transforms, compositions of the geodesic ray transform and an ... -
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, Joonas; Mönkkönen, Keijo (Springer Science and Business Media LLC, 2023)We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce ... -
Injectivity results for the geodesic ray transform
Lehtonen, Jere (University of Jyväskylä, 2017)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.