Fraktaalilaatoitukset
Authors
Date
2020Tämä tutkielma käsittelee fraktaaligeometriaa sekä tarkemmin fraktaalilaatoituksia tasossa. Tutkielman pääasiallisena tarkoituksena on luoda pohja fraktaalilaatoitusten muodostamiselle. Tämä tehdään määritelemällä ensin Hausdorffin etäisyys sekä Banachin kiintopistelause. Jotta näiden määrittäminen voidaan tehdä, tutustutaan myös metrisiin avaruuksiin sekä niiden ominaisuuksiin.
Tutkielman tärkeänä osana ovat iteroidut funktiojärjestelmät (IFS) sekä niiden attraktorit. IFS on fraktaalien rakentamiseksi luotu järjestelmä, jonka avulla fraktaalien mallintaminen on mahdollista. Tutkielmassa todistetaan Banachin
kiintopistelausetta käyttäen, että täydellisessä metrisessä avaruudessa maaritetyllä
IFS:llä on olemassa yksikäsitteinen attraktori.
Tässä tutkielmassa fraktaaleja tutkitaan kaksiulotteisessa avaruudessa. Fraktaaliesimerkkejä käydään läpi ensin neljä kappaletta. Nämä ovat Cantorin joukko, Kochin käyrä, Sierpinskin kolmio sekä Mandelbrotin joukko. Näistä kolme ensimmäistä ovat IFS:n antamia. Annamme näille esimerkeille funktiojärjestelmät, joilla fraktaalit on helppo iteroiden muodostaa.
Itse fraktaalilaatoituksiin tutustutaan neliöaatoitusten pohjalta. Fraktaalilaatoitusten todetaan koostuvan itsesimilaarisista fraktaalilaatoista eli jokainen yksittäinen laatta on toisensa kopio. Laattojen muodostamisessa käytetään iteroitua funktiojärjestelmää, jossa kutistussuhteet ovat kaikilla funktioilla samat ja saatu laatoitus riippuu vain siirtovektoreiden valinnasta. Tutkielma sisältää esimerkkejä, joiden avulla huomataan, mitkä ovat järkeviä valintoja siirtovektoreille ja mitkä eivät. Tarkkoja ehtoja fraktaalilaatoitusten muodostamiselle ei kuitenkaan anneta.
Tutkielman alussa tutustutaan myös hieman fraktaalien historiaan. Kerrotaan
esimerkiksi ensimmäisistä löydetyistä fraktaaleista sekä siitä, milloin fraktaaleja
alettiin mallintamaan matemaattisesti.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29743]
License
Related items
Showing items with similar title or keywords.
-
Cantorin joukon aritmetiikkaa
Törmälehto, Ronja (2022)Tämän tutkielman tarkoituksena on perehtyä Cantorin joukon aritmetiikkaan. Tutkielmassa keskitytään käsittelemään Cantorin 1/3-joukkoa. Aluksi käydään läpi Cantorin joukon määritelmä ja sen perusominaisuuksia, jonka jälkeen ... -
Iterated function systems: natural measure and local structure
Käenmäki, Antti (University of Jyväskylä, 2003) -
Dimension of projection : Marstrand's theorem
Pesonen, Sofia (2022)Tässä tutkielmassa todistetaan Marstrandin projektiolause käyttäen apuna potentiaaliteoriaa. Projektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaaliprojektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon ... -
Julian joukot
Kivinen, Henna-Liisa (2013) -
Visible and nonexistent trees of Mandelbrot sets
Kauko, Virpi (University of Jyväskylä, 2003)