Show simple item record

dc.contributor.authorToivanen, Jari
dc.contributor.authorWolfmayr, Monika
dc.date.accessioned2020-01-31T07:53:27Z
dc.date.available2020-01-31T07:53:27Z
dc.date.issued2020
dc.identifier.citationToivanen, J., & Wolfmayr, M. (2020). A fast Fourier transform based direct solver for the Helmholtz problem. <i>Numerical Linear Algebra with Applications</i>, <i>27</i>(3), Article e2283. <a href="https://doi.org/10.1002/nla.2283" target="_blank">https://doi.org/10.1002/nla.2283</a>
dc.identifier.otherCONVID_34480305
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67645
dc.description.abstractThis article is devoted to the efficient numerical solution of the Helmholtz equation in a two‐ or three‐dimensional (2D or 3D) rectangular domain with an absorbing boundary condition (ABC). The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations. The main key to high performance is to employ the fast Fourier transform (FFT) within a fast direct solver to solve the large separable systems. The computational complexity of the proposed FFT‐based direct solver is O(N log N) operations. Numerical results for both 2D and 3D problems are presented confirming the efficiency of the method discussed.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.ispartofseriesNumerical Linear Algebra with Applications
dc.rightsIn Copyright
dc.subject.otherabsorbing boundary conditions
dc.subject.otherfast direct solver
dc.subject.otherfinite‐element discretization
dc.subject.otherFourier transform
dc.subject.otherHelmholtz equation
dc.titleA fast Fourier transform based direct solver for the Helmholtz problem
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202001311910
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1070-5325
dc.relation.numberinseries3
dc.relation.volume27
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 John Wiley & Sons, Ltd.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295897
dc.subject.ysoFourier'n sarjat
dc.subject.ysonumeerinen analyysi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysonumeeriset menetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8723
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p6588
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1002/nla.2283
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe authors gratefully acknowledge the financial support by the Academy of Finland under the grant 295897.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright