A fast Fourier transform based direct solver for the Helmholtz problem
Toivanen, J., & Wolfmayr, M. (2020). A fast Fourier transform based direct solver for the Helmholtz problem. Numerical Linear Algebra with Applications, 27(3), Article e2283. https://doi.org/10.1002/nla.2283
Julkaistu sarjassa
Numerical Linear Algebra with ApplicationsPäivämäärä
2020Tekijänoikeudet
© 2020 John Wiley & Sons, Ltd.
This article is devoted to the efficient numerical solution of the Helmholtz equation in a two‐ or three‐dimensional (2D or 3D) rectangular domain with an absorbing boundary condition (ABC). The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations. The main key to high performance is to employ the fast Fourier transform (FFT) within a fast direct solver to solve the large separable systems. The computational complexity of the proposed FFT‐based direct solver is O(N log N) operations. Numerical results for both 2D and 3D problems are presented confirming the efficiency of the method discussed.
Julkaisija
John Wiley & SonsISSN Hae Julkaisufoorumista
1070-5325Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34480305
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The authors gratefully acknowledge the financial support by the Academy of Finland under the grant 295897.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A nonsmooth primal-dual method with interwoven PDE constraint solver
Jensen, Bjørn; Valkonen, Tuomo (Springer, 2024)We introduce an efficient first-order primal-dual method for the solution of nonsmooth PDE-constrained optimization problems. We achieve this efficiency through not solving the PDE or its linearisation on each iteration ... -
On a numerical solution of the Maxwell equations by discrete exterior calculus
Räbinä, Jukka (University of Jyväskylä, 2014) -
GPU-accelerated time integration of Gross-Pitaevskii equation with discrete exterior calculus
Kivioja, Markus; Mönkölä, Sanna; Rossi, Tuomo (Elsevier BV, 2022)The quantized vortices in superfluids are modeled by the Gross-Pitaevskii equation whose numerical time integration is instrumental in the physics studies of such systems. In this paper, we present a reliable numerical ... -
Torus Computed Tomography
Ilmavirta, Joonas; Koskela, Olli; Railo, Jesse (Society for Industrial and Applied Mathematics, 2020)We present a new computed tomography (CT) method for inverting the Radon transform in 2 dimensions. The idea relies on the geometry of the flat torus; hence we call the new method Torus CT. We prove new inversion formulas ... -
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.