NDVI Vegetation Analysis using UAV Imagery
Tekijät
Päivämäärä
2020Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Kasvillisuusindeksejä käytetään kasvillisuuden tavoiteltujen ominaisuuksien parantamiseksi. Käyttämällä algoritmejä, kuten normalisoitua
kasvillisuusindeksiä (NDVI), vihreän kasvillisuuden terveys tai stressi voidaan mitata täsmällisesti ja yhdenmukaisesti. Tämä kirjallisuuskatsaus tutkii NDVI:n lähtökohtia ja multispektrisensorilla varustettujen miehittämättömien ilma-alusten (UAV)
käyttöä mittauksiin NDVI-analyysejä varten. NDVI-analyysiprosessi lentosuunnittelusta tuloksiin tarkastellaan käyttäen täsmäviljelyä esimerkkinä. Vegetation Indices are used to enhance targeted properties of vegetation.
Using algorithms such as the Normalized Difference Vegetation Index (NDVI), the
health or stress of green vegetation can be accurately and consistently measured.
This literature review looks into the origins of NDVI and the use of UAV’s equipped
with multispectral sensors to perform measurements for NDVI analysis. Using precision agriculture as an example, the process of NDVI analysis from flight planning
to results is observed.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Kandidaatintutkielmat [5333]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture
Honkavaara, Eija; Saari, Heikki; Kaivosoja, Jere; Pölönen, Ilkka; Hakala, Teemu; Litkey, Paula; Mäkynen, Jussi; Pesonen, Liisa (MDPI AG, 2013)Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs ... -
Why did electronic B2B marketplaces fail? : case study of an agricultural commodity exchange
Luomakoski, Jari (University of Jyväskylä, 2012) -
Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images
Turkulainen, Emma; Honkavaara, Eija; Näsi, Roope; Oliveira, Raquel A.; Hakala, Teemu; Junttila, Samuli; Karila, Kirsi; Koivumäki, Niko; Pelto-Arvo, Mikko; Tuviala, Johanna; Östersund, Madeleine; Pölönen, Ilkka; Lyytikäinen-Saarenmaa, Päivi (MDPI AG, 2023)The widespread tree mortality caused by the European spruce bark beetle (Ips typographus L.) is a significant concern for Norway spruce-dominated (Picea abies H. Karst) forests in Europe and there is evidence of increases ... -
Rapid Quantification of Microalgae Growth with Hyperspectral Camera and Vegetation Indices
Salmi, Pauliina; Eskelinen, Matti A.; Leppänen, Matti T.; Pölönen, Ilkka (MDPI AG, 2021)Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for ... -
Monitoring peatland water table depth with optical and radar satellite imagery
Räsänen, Aleksi; Tolvanen, Anne; Kareksela, Santtu (Elsevier, 2022)Peatland water table depth (WTD) and wetness have widely been monitored with optical and synthetic aperture radar (SAR) remote sensing but there is a lack of studies that have used multi-sensor data, i.e., combination of ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.