HyperBlend : Simulating Spectral Reflectance and Transmittance of Leaf Tissue with Blender
Riihiaho, K. A., Rossi, T., & Pölönen, I. (2022). HyperBlend : Simulating Spectral Reflectance and Transmittance of Leaf Tissue with Blender. In J. Jiang, A. Shaker, & H. Zhang (Eds.), XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission III (V-3-2022, pp. 471-476). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-annals-V-3-2022-471-2022
Julkaistu sarjassa
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information SciencesPäivämäärä
2022Oppiaine
Computing, Information Technology and MathematicsTutkintokoulutusTietotekniikkaLaskennallinen tiedeComputing, Information Technology and MathematicsDegree EducationMathematical Information TechnologyComputational ScienceTekijänoikeudet
© Author(s) 2022
Remotely sensing vegetation condition and health hazards requires modeling the connection of plants’ biophysical and biochemical parameters to their spectral response. Even though many models exist already, the field suffers from lack of access to program code. In this study, we will assess the feasibility of open-source 3D-modeling and rendering software Blender in simulating hyperspectral reflectance and transmittance of leaf tissue to serve as a base for a more advanced large-scale simulator. This is the first phase of a larger HyperBlend project, which will provide a fully open-source, canopy scale leaf optical properties model for simulating remotely sensed hyperspectral images. Test results of the current HyperBlend model show good agreement with real-world measurements with root mean squared error around 1‰. The program code is available at https://github.com/silmae/ hyperblend.
Julkaisija
Copernicus PublicationsKonferenssi
International Society for Photogrammetry and Remote Sensing CongressKuuluu julkaisuun
XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission IIIISSN Hae Julkaisufoorumista
2194-9042Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/150900468
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This study was funded by Academy of Finland (327862).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Editorial for the special issue "Frontiers in spectral imaging and 3D technologies for geospatial solutions"
Honkavaara, Eija; Karantzalos, Konstantinos; Liang, Xinlian; Nocerino, Erica; Pölönen, Ilkka; Rönnholm, Petri (MDPI, 2019)This Special Issue hosts papers on the integrated use of spectral imaging and 3D technologies in remote sensing, including novel sensors, evolving machine learning technologies for data analysis, and the utilization of ... -
Deep semantic segmentation for skin cancer detection from hyperspectral images
Karhu, Anette (2020)As skin cancer types are a growing concern worldwide, a new screening tool combined with automation may help the clinicians in clinical examinations of lesions. A novel hyperspectral imager prototype has been noted to be ... -
Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network
Pölönen, Ilkka; Annala, Leevi; Rahkonen, Samuli; Nevalainen, Olli; Honkavaara, Eija; Tuominen, Sakari; Viljanen, Niko; Hakala, Teemu (IEEE, 2019)In this study we apply 3D convolutional neural network (CNN) for tree species identification. Study includes the three most common Finnish tree species. Study uses a relatively large high-resolution spectral data set, ... -
Rapid Quantification of Microalgae Growth with Hyperspectral Camera and Vegetation Indices
Salmi, Pauliina; Eskelinen, Matti A.; Leppänen, Matti T.; Pölönen, Ilkka (MDPI AG, 2021)Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for ... -
Effective elastic properties of biocomposites using 3D computational homogenization and X-ray microcomputed tomography
Karakoç, Alp; Miettinen, Arttu; Virkajarvi, Jussi; Joffe, Roberts (Elsevier BV, 2021)A 3D computational homogenization method based on X-ray microcomputed tomography (μCT) was proposed and implemented to investigate how the fiber weight fraction, orthotropy and orientation distribution affect the effective ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.