dc.contributor.author | Wang, Xiulin | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2020-01-07T16:54:24Z | |
dc.date.available | 2020-01-07T16:54:24Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Wang, X., Ristaniemi, T., & Cong, F. (2019). Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing</i> (pp. 8588-8592). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. <a href="https://doi.org/10.1109/ICASSP.2019.8682737" target="_blank">https://doi.org/10.1109/ICASSP.2019.8682737</a> | |
dc.identifier.other | CONVID_30533327 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/67150 | |
dc.description.abstract | Real-world data exhibiting high order/dimensionality and
various couplings are linked to each other since they share
some common characteristics. Coupled tensor decomposition
has become a popular technique for group analysis in recent
years, especially for simultaneous analysis of multi-block
tensor data with common information. To address the multiblock tensor data, we propose a fast double-coupled nonnegative Canonical Polyadic Decomposition (FDC-NCPD)
algorithm in this study, based on the linked CP tensor decomposition (LCPTD) model and fast Hierarchical Alternating
Least Squares (Fast-HALS) algorithm. The proposed FDCNCPD algorithm enables simultaneous extraction of common
components, individual components and core tensors from
tensor blocks. Moreover, time consumption is greatly reduced
without compromising the decomposition quality when handling large-scale tensor blocks. Simulation experiments of
synthetic and real-world data are conducted to demonstrate
the superior performance of the proposed algorithm. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing | |
dc.relation.ispartofseries | Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing | |
dc.rights | In Copyright | |
dc.subject.other | brain modeling | |
dc.subject.other | signal processing algorithms | |
dc.subject.other | signal to noise ratio | |
dc.subject.other | electroencephalography | |
dc.subject.other | mathematical model | |
dc.subject.other | tensor decomposition | |
dc.subject.other | coupled tensor decomposition | |
dc.subject.other | hierarchical alternating least squares (HALS) | |
dc.subject.other | linked CP tensor decomposition (LCPTD) | |
dc.title | Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202001071058 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2020-01-07T10:15:13Z | |
dc.relation.isbn | 978-1-4799-8131-1 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 8588-8592 | |
dc.relation.issn | 1520-6149 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | IEEE International Conference on Acoustics, Speech and Signal Processing | |
dc.subject.yso | konvergenssi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14179 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/ICASSP.2019.8682737 | |
dc.type.okm | A4 | |