Show simple item record

dc.contributor.authorWang, Xiulin
dc.contributor.authorRistaniemi, Tapani
dc.contributor.authorCong, Fengyu
dc.date.accessioned2020-01-07T16:54:24Z
dc.date.available2020-01-07T16:54:24Z
dc.date.issued2019
dc.identifier.citationWang, X., Ristaniemi, T., & Cong, F. (2019). Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing</i> (pp. 8588-8592). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. <a href="https://doi.org/10.1109/ICASSP.2019.8682737" target="_blank">https://doi.org/10.1109/ICASSP.2019.8682737</a>
dc.identifier.otherCONVID_30533327
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67150
dc.description.abstractReal-world data exhibiting high order/dimensionality and various couplings are linked to each other since they share some common characteristics. Coupled tensor decomposition has become a popular technique for group analysis in recent years, especially for simultaneous analysis of multi-block tensor data with common information. To address the multiblock tensor data, we propose a fast double-coupled nonnegative Canonical Polyadic Decomposition (FDC-NCPD) algorithm in this study, based on the linked CP tensor decomposition (LCPTD) model and fast Hierarchical Alternating Least Squares (Fast-HALS) algorithm. The proposed FDCNCPD algorithm enables simultaneous extraction of common components, individual components and core tensors from tensor blocks. Moreover, time consumption is greatly reduced without compromising the decomposition quality when handling large-scale tensor blocks. Simulation experiments of synthetic and real-world data are conducted to demonstrate the superior performance of the proposed algorithm.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
dc.relation.ispartofseriesProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
dc.rightsIn Copyright
dc.subject.otherbrain modeling
dc.subject.othersignal processing algorithms
dc.subject.othersignal to noise ratio
dc.subject.otherelectroencephalography
dc.subject.othermathematical model
dc.subject.othertensor decomposition
dc.subject.othercoupled tensor decomposition
dc.subject.otherhierarchical alternating least squares (HALS)
dc.subject.otherlinked CP tensor decomposition (LCPTD)
dc.titleFast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202001071058
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2020-01-07T10:15:13Z
dc.relation.isbn978-1-4799-8131-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange8588-8592
dc.relation.issn1520-6149
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE International Conference on Acoustics, Speech and Signal Processing
dc.subject.ysokonvergenssi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14179
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICASSP.2019.8682737
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright