Graphical Structure of Attraction Basins of Hidden Chaotic Attractors : The Rabinovich-Fabrikant System
Danca, Marius-F., Bourke, P., & Kuznetsov, N. (2019). Graphical Structure of Attraction Basins of Hidden Chaotic Attractors : The Rabinovich-Fabrikant System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 29(1), Article 1930001. https://doi.org/10.1142/S0218127419300015
Julkaistu sarjassa
International Journal of Bifurcation and Chaos in Applied Sciences and EngineeringPäivämäärä
2019Tekijänoikeudet
© World Scientific Publishing Company 2019
The attraction basin of hidden attractors does not intersect with small neighborhoods of any equilibrium point. To the best of our knowledge this property has not been explored using realtime interactive three-dimensions graphics. Aided by advanced computer graphic analysis, in this paper, we explore this characteristic of a particular nonlinear system with very rich and unusual dynamics, the Rabinovich–Fabrikant system. It is shown that there exists a neighborhood of one of the unstable equilibria within which the initial conditions do not lead to the considered hidden chaotic attractor, but to one of the stable equilibria or are divergent. The trajectories starting from any neighborhood of the other unstable equilibria are attracted either by the stable equilibria, or are divergent.
Julkaisija
World Scientific Publishing Co. Pte. Ltd.ISSN Hae Julkaisufoorumista
0218-1274Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28916272
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
Kuznetsov, Nikolay; Mokaev, Timur (IOP Publishing, 2019)In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz ... -
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. (Springer, 2020)On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global ... -
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
Danca, Marius-F.; Fečkan, Michal; Kuznetsov, Nikolay; Chen, Guanrong (Springer, 2018) -
Hidden Strange Nonchaotic Attractors
Danca, Marius-F.; Kuznetsov, Nikolay (MDPI AG, 2021)In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the ... -
Hidden and self-excited attractors in radiophysical and biophysical models
Stankevich, Nataliya (University of Jyväskylä, 2017)One of the central tasks of investigation of dynamical systems is the problem of analysis of the steady (limiting) behavior of the system after the completion of transient processes, i.e., the problem of localization and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.