Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
Kuznetsov, N., & Mokaev, T. (2019). Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension. In V. V. Kozlov, N. A. Kudryashov, & O. V. Nagornov (Eds.), MPMM 2018 : VII International Conference Problems of Mathematical Physics and Mathematical Modelling (Article 012034). IOP Publishing. Journal of Physics: Conference Series, 1205. https://doi.org/10.1088/1742-6596/1205/1/012034
Julkaistu sarjassa
Journal of Physics: Conference SeriesPäivämäärä
2019Tekijänoikeudet
© IOP Publishing Limited, 2019.
In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rössler system. Using the example of the Vallis system describing the El Ninõ-Southern Oscillation it is demonstrated an analytical approach for localization of self-excited and hidden attractors, which allows to obtain the exact formulas or estimates of their Lyapunov dimensions.
Julkaisija
IOP PublishingKonferenssi
International Conference Problems of Mathematical Physics and Mathematical ModellingKuuluu julkaisuun
MPMM 2018 : VII International Conference Problems of Mathematical Physics and Mathematical ModellingISSN Hae Julkaisufoorumista
1742-6588Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30677409
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. (Springer, 2020)On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global ... -
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
Danca, Marius-F.; Fečkan, Michal; Kuznetsov, Nikolay; Chen, Guanrong (Springer, 2018) -
Study of irregular dynamics in an economic model : attractor localization and Lyapunov exponents
Alexeeva, Tatyana A.; Kuznetsov, Nikolay V.; Mokaev, Timur N. (Elsevier, 2021)Cyclicality and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in ... -
Hidden Strange Nonchaotic Attractors
Danca, Marius-F.; Kuznetsov, Nikolay (MDPI AG, 2021)In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the ... -
Localization and dimension estimation of attractors in the Glukhovsky-Dolzhansky system
Mokaev, Timur (University of Jyväskylä, 2016)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.