dc.contributor.author | Karppinen, Santeri | |
dc.contributor.author | Lohi, Olli | |
dc.contributor.author | Vihola, Matti | |
dc.date.accessioned | 2019-12-11T10:47:48Z | |
dc.date.available | 2019-12-11T10:47:48Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Karppinen, S., Lohi, O., & Vihola, M. (2019). Prediction of leukocyte counts during paediatric acute lymphoblastic leukaemia maintenance therapy. <i>Scientific Reports</i>, <i>9</i>, Article 18076. <a href="https://doi.org/10.1038/s41598-019-54492-5" target="_blank">https://doi.org/10.1038/s41598-019-54492-5</a> | |
dc.identifier.other | CONVID_33687281 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66732 | |
dc.description.abstract | Maintenance chemotherapy with oral 6-mercaptopurine and methotrexate remains a cornerstone of modern therapy for acute lymphoblastic leukaemia. The dosage and intensity of therapy are based on surrogate markers such as peripheral blood leukocyte and neutrophil counts. Dosage based leukocyte count predictions could provide support for dosage decisions clinicians face trying to find and maintain an appropriate dosage for the individual patient. We present two Bayesian nonlinear state space models for predicting patient leukocyte counts during the maintenance therapy. The models simplify some aspects of previously proposed models but allow for some extra flexibility. Our second model is an extension which accounts for extra variation in the leukocyte count due to a treatment adversity, infections, using C-reactive protein as a surrogate. The predictive performances of our models are compared against a model from the literature using time series cross-validation with patient data. In our experiments, our simplified models appear more robust and deliver competitive results with the model from the literature. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Scientific Reports | |
dc.rights | CC BY 4.0 | |
dc.title | Prediction of leukocyte counts during paediatric acute lymphoblastic leukaemia maintenance therapy | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201912115198 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2045-2322 | |
dc.relation.volume | 9 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors, 2019 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 315619 | |
dc.relation.grantnumber | 274740 | |
dc.relation.grantnumber | 312605 | |
dc.subject.yso | syöpätaudit | |
dc.subject.yso | bayesilainen menetelmä | |
dc.subject.yso | ennusteet | |
dc.subject.yso | tilastolliset mallit | |
dc.subject.yso | lääkehoito | |
dc.subject.yso | stokastiset prosessit | |
dc.subject.yso | akuutti lymfaattinen leukemia | |
dc.subject.yso | aikasarjat | |
dc.subject.yso | valkosolut | |
dc.subject.yso | biomarkkerit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p678 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26278 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10851 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24089 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12290 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18721 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12288 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1038/s41598-019-54492-5 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundinginformation | S.K. and M.V. were supported by Academy of Finland grants 274740, 312605 and 315619. This research is related to the thematic research area DEMO (Decision Analytics utilising Causal Models and Multiobjective Optimisation) of the University of Jyväskylä. | |
dc.type.okm | A1 | |