dc.contributor.author | Tarvainen, O. | |
dc.contributor.author | Kalvas, T. | |
dc.contributor.author | Koivisto, H. | |
dc.contributor.author | Kronholm, R. | |
dc.contributor.author | Marttinen, M. | |
dc.contributor.author | Sakildien, M. | |
dc.contributor.author | Toivanen, V. | |
dc.contributor.author | Izotov, I. | |
dc.contributor.author | Skalyga, V. | |
dc.contributor.author | Angot, J. | |
dc.date.accessioned | 2019-12-11T09:34:14Z | |
dc.date.available | 2019-12-11T09:34:14Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Tarvainen, O., Kalvas, T., Koivisto, H., Kronholm, R., Marttinen, M., Sakildien, M., Toivanen, V., Izotov, I., Skalyga, V., & Angot, J. (2019). Plasma diagnostic tools for ECR ion sources : What can we learn from these experiments for the next generation sources. <i>Review of Scientific Instruments</i>, <i>90</i>(11), Article 113321. <a href="https://doi.org/10.1063/1.5127050" target="_blank">https://doi.org/10.1063/1.5127050</a> | |
dc.identifier.other | CONVID_33627822 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66726 | |
dc.description.abstract | The order-of-magnitude performance leaps of ECR ion sources over the past decades result from improvements to the magnetic plasma confinement, increases in the microwave heating frequency, and techniques to stabilize the plasma at high densities. Parallel to the technical development of the ion sources themselves, significant effort has been directed into the development of their plasma diagnostic tools. We review the recent results of Electron Cyclotron Resonance Ion Source (ECRIS) plasma diagnostics highlighting a number of selected examples of plasma density, electron energy distribution, and ion confinement time measurements, obtained mostly with the second-generation sources operating at frequencies from 10 to 18 GHz. The development of minimum-B ECR ion sources based on the superposition of solenoid and sextupole fields has long relied on semiempirical scaling laws for the strength of the magnetic field with increasing plasma heating frequency. This approach is becoming increasingly difficult with the looming limits of superconducting technologies being able to satisfy the magnetic field requirements at frequencies approaching 60 GHz. Thus, we discuss alternative ECRIS concepts and proposed modifications to existing sources that are supported by the current understanding derived from the plasma diagnostics experiments. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.ispartofseries | Review of Scientific Instruments | |
dc.rights | In Copyright | |
dc.subject.other | plasma confinement | |
dc.subject.other | plasma heating | |
dc.subject.other | ion sources | |
dc.subject.other | plasma diagnostics | |
dc.subject.other | bremsstrahlung | |
dc.subject.other | plasma properties and parameters | |
dc.subject.other | magnetic fields | |
dc.subject.other | optical emission spectroscopy | |
dc.title | Plasma diagnostic tools for ECR ion sources : What can we learn from these experiments for the next generation sources | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201912115192 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Kiihdytinlaboratorio | fi |
dc.contributor.oppiaine | Accelerator Laboratory | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0034-6748 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 90 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 315855 | |
dc.relation.grantnumber | 654002 | |
dc.relation.grantnumber | 654002 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/654002/EU// | |
dc.subject.yso | syklotronit | |
dc.subject.yso | plasmafysiikka | |
dc.subject.yso | hiukkaskiihdyttimet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15295 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10238 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14309 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1063/1.5127050 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Research infrastructures, H2020 | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Research infrastructures, H2020 | en |
jyx.fundinginformation | This work has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 654002, the Academy of Finland under the Finnish Centre of Excellence Program 2012–2017 (Nuclear and Accelerator Based Physics Research at JYFL, Project No. 213503), and the Academy of Finland Project Funding (No. 315855). The research of V. A. Skalyga and I. V. Izotov was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation No. 0035-2019-0002. | |
dc.type.okm | A1 | |