Näytä suppeat kuvailutiedot

dc.contributor.authorTarvainen, O.
dc.contributor.authorKalvas, T.
dc.contributor.authorKoivisto, H.
dc.contributor.authorKronholm, R.
dc.contributor.authorMarttinen, M.
dc.contributor.authorSakildien, M.
dc.contributor.authorToivanen, V.
dc.contributor.authorIzotov, I.
dc.contributor.authorSkalyga, V.
dc.contributor.authorAngot, J.
dc.date.accessioned2019-12-11T09:34:14Z
dc.date.available2019-12-11T09:34:14Z
dc.date.issued2019
dc.identifier.citationTarvainen, O., Kalvas, T., Koivisto, H., Kronholm, R., Marttinen, M., Sakildien, M., Toivanen, V., Izotov, I., Skalyga, V., & Angot, J. (2019). Plasma diagnostic tools for ECR ion sources : What can we learn from these experiments for the next generation sources. <i>Review of Scientific Instruments</i>, <i>90</i>(11), Article 113321. <a href="https://doi.org/10.1063/1.5127050" target="_blank">https://doi.org/10.1063/1.5127050</a>
dc.identifier.otherCONVID_33627822
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66726
dc.description.abstractThe order-of-magnitude performance leaps of ECR ion sources over the past decades result from improvements to the magnetic plasma confinement, increases in the microwave heating frequency, and techniques to stabilize the plasma at high densities. Parallel to the technical development of the ion sources themselves, significant effort has been directed into the development of their plasma diagnostic tools. We review the recent results of Electron Cyclotron Resonance Ion Source (ECRIS) plasma diagnostics highlighting a number of selected examples of plasma density, electron energy distribution, and ion confinement time measurements, obtained mostly with the second-generation sources operating at frequencies from 10 to 18 GHz. The development of minimum-B ECR ion sources based on the superposition of solenoid and sextupole fields has long relied on semiempirical scaling laws for the strength of the magnetic field with increasing plasma heating frequency. This approach is becoming increasingly difficult with the looming limits of superconducting technologies being able to satisfy the magnetic field requirements at frequencies approaching 60 GHz. Thus, we discuss alternative ECRIS concepts and proposed modifications to existing sources that are supported by the current understanding derived from the plasma diagnostics experiments.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesReview of Scientific Instruments
dc.rightsIn Copyright
dc.subject.otherplasma confinement
dc.subject.otherplasma heating
dc.subject.otherion sources
dc.subject.otherplasma diagnostics
dc.subject.otherbremsstrahlung
dc.subject.otherplasma properties and parameters
dc.subject.othermagnetic fields
dc.subject.otheroptical emission spectroscopy
dc.titlePlasma diagnostic tools for ECR ion sources : What can we learn from these experiments for the next generation sources
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201912115192
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0034-6748
dc.relation.numberinseries11
dc.relation.volume90
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber315855
dc.relation.grantnumber654002
dc.relation.grantnumber654002
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654002/EU//
dc.subject.ysosyklotronit
dc.subject.ysoplasmafysiikka
dc.subject.ysohiukkaskiihdyttimet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15295
jyx.subject.urihttp://www.yso.fi/onto/yso/p10238
jyx.subject.urihttp://www.yso.fi/onto/yso/p14309
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/1.5127050
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramResearch infrastructures, H2020fi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch infrastructures, H2020en
jyx.fundinginformationThis work has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 654002, the Academy of Finland under the Finnish Centre of Excellence Program 2012–2017 (Nuclear and Accelerator Based Physics Research at JYFL, Project No. 213503), and the Academy of Finland Project Funding (No. 315855). The research of V. A. Skalyga and I. V. Izotov was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation No. 0035-2019-0002.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright