A Multiple Surrogate Assisted Decomposition Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization
Habib, A., Singh, H. K., Chugh, T., Ray, T., & Miettinen, K. (2019). A Multiple Surrogate Assisted Decomposition Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 23(6), 1000-1014. https://doi.org/10.1109/TEVC.2019.2899030
Julkaistu sarjassa
IEEE Transactions on Evolutionary ComputationPäivämäärä
2019Oppiaine
TietotekniikkaLaskennallinen tiedeMultiobjective Optimization GroupMathematical Information TechnologyComputational ScienceMultiobjective Optimization GroupTekijänoikeudet
© 2019 IEEE
Many-objective optimization problems (MaOPs) contain four or more conflicting objectives to be optimized. A number of efficient decomposition-based evolutionary algorithms have been developed in the recent years to solve them. However, computationally expensive MaOPs have been scarcely investigated. Typically, surrogate-assisted methods have been used in the literature to tackle computationally expensive problems, but such studies have largely focused on problems with 1–3 objectives. In this paper, we present an approach called hybrid surrogate-assisted many-objective evolutionary algorithm to solve computationally expensive MaOPs. The key features of the approach include: 1) the use of multiple surrogates to effectively approximate a wide range of objective functions; 2) use of two sets of reference vectors for improved performance on irregular Pareto fronts (PFs); 3) effective use of archive solutions during offspring generation; and 4) a local improvement scheme for generating high quality infill solutions. Furthermore, the approach includes constraint handling which is often overlooked in contemporary algorithms. The performance of the approach is benchmarked extensively on a set of unconstrained and constrained problems with regular and irregular PFs. A statistical comparison with the existing techniques highlights the efficacy and potential of the approach.
...
Julkaisija
Institute of Electrical and Electronics EngineersISSN Hae Julkaisufoorumista
1089-778XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28920866
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported in part by the Natural Environment Research Council under Grant NE/P017436/1. The work of A. Habib was supported by the Australian Government via “Research Training Program Scholarship” and the travel grant received from the University of Jyvaskyla (funding of Prof. K. Miettinen). The work of T. Ray was supported by Australian Research Council under Grant DP190101271.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
Chugh, Tinkle; Jin, Yaochu; Miettinen, Kaisa; Hakanen, Jussi; Sindhya, Karthik (Institute of Electrical and Electronics Engineers, 2018)We propose a surrogate-assisted reference vector guided evolutionary algorithm (EA) for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed ... -
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ... -
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
Chugh, Tinkle; Kratky, Tomas; Miettinen, Kaisa; Jin, Yaochu; Makkonen, Pekka (ACM, 2019)We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. ... -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ... -
An interactive surrogate-based method for computationally expensive multiobjective optimisation
Tabatabaei, Mohammad; Hartikainen, Markus; Sindhya, Karthik; Hakanen, Jussi; Miettinen, Kaisa (Palgrave Macmillan Ltd., 2019)Many disciplines involve computationally expensive multiobjective optimisation problems. Surrogate-based methods are commonly used in the literature to alleviate the computational cost. In this paper, we develop an interactive ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.