Show simple item record

dc.contributor.authorHabib, Ahsanul
dc.contributor.authorSingh, Hemant Kumar
dc.contributor.authorChugh, Tinkle
dc.contributor.authorRay, Tapabrata
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2019-12-04T08:13:27Z
dc.date.available2019-12-04T08:13:27Z
dc.date.issued2019
dc.identifier.citationHabib, A., Singh, H. K., Chugh, T., Ray, T., & Miettinen, K. (2019). A Multiple Surrogate Assisted Decomposition Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i>, <i>23</i>(6), 1000-1014. <a href="https://doi.org/10.1109/TEVC.2019.2899030" target="_blank">https://doi.org/10.1109/TEVC.2019.2899030</a>
dc.identifier.otherCONVID_28920866
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66638
dc.description.abstractMany-objective optimization problems (MaOPs) contain four or more conflicting objectives to be optimized. A number of efficient decomposition-based evolutionary algorithms have been developed in the recent years to solve them. However, computationally expensive MaOPs have been scarcely investigated. Typically, surrogate-assisted methods have been used in the literature to tackle computationally expensive problems, but such studies have largely focused on problems with 1–3 objectives. In this paper, we present an approach called hybrid surrogate-assisted many-objective evolutionary algorithm to solve computationally expensive MaOPs. The key features of the approach include: 1) the use of multiple surrogates to effectively approximate a wide range of objective functions; 2) use of two sets of reference vectors for improved performance on irregular Pareto fronts (PFs); 3) effective use of archive solutions during offspring generation; and 4) a local improvement scheme for generating high quality infill solutions. Furthermore, the approach includes constraint handling which is often overlooked in contemporary algorithms. The performance of the approach is benchmarked extensively on a set of unconstrained and constrained problems with regular and irregular PFs. A statistical comparison with the existing techniques highlights the efficacy and potential of the approach.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartofseriesIEEE Transactions on Evolutionary Computation
dc.rightsIn Copyright
dc.subject.othermultiprotocol label switching
dc.subject.othermultiobjective optimization
dc.subject.othermetamodels
dc.subject.otherreference vectors
dc.subject.othercomputational cost
dc.titleA Multiple Surrogate Assisted Decomposition Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201911285045
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-11-28T13:15:17Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1000-1014
dc.relation.issn1089-778X
dc.relation.numberinseries6
dc.relation.volume23
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoevoluutiolaskenta
dc.subject.ysomonitavoiteoptimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28071
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/TEVC.2019.2899030
jyx.fundinginformationThis work was supported in part by the Natural Environment Research Council under Grant NE/P017436/1. The work of A. Habib was supported by the Australian Government via “Research Training Program Scholarship” and the travel grant received from the University of Jyvaskyla (funding of Prof. K. Miettinen). The work of T. Ray was supported by Australian Research Council under Grant DP190101271.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright