Show simple item record

dc.contributor.authorKaabel, Sandra
dc.contributor.authorAdamson, Jasper
dc.contributor.authorTopic, Filip
dc.contributor.authorKiesilä, Anniina
dc.contributor.authorKalenius, Elina
dc.contributor.authorÖeren, Mario
dc.contributor.authorReimund, Mart
dc.contributor.authorPrigorchenko, Elena
dc.contributor.authorLõokene, Aivar
dc.contributor.authorReich, Hans J.
dc.contributor.authorRissanen, Kari
dc.contributor.authorAav, Riina
dc.identifier.citationKaabel, S., Adamson, J., Topic, F., Kiesilä, A., Kalenius, E., Öeren, M., Reimund, M., Prigorchenko, E., Lõokene, A., Reich, H. J., Rissanen, K., & Aav, R. (2017). Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution. <i>Chemical Science</i>, <i>8</i>(3), 2184-2190. <a href="" target="_blank"></a>
dc.description.abstractA novel eight-membered macrocycle of the hemicucurbit[n]uril family, chiral (all-R)-cyclohexanohemicucurbit[8]uril (cycHC[8]) binds anions in a purely protic solvent with remarkable selectivity. The cycHC[8] portals open and close to fully encapsulate anions in a 1 : 1 ratio, resembling a molecular Pac-Man™. Comprehensive gas, solution and solid phase studies prove that the binding is governed by the size, shape and charge distribution of the bound anion. Gas phase studies show an order of SbF6− ≈ PF6− > ReO4− > ClO4− > SCN− > BF4− > HSO4− > CF3SO3− for anion complexation strength. An extensive crystallographic study reveals the preferred orientations of the anions within the octahedral cavity of cycHC[8] and highlights the importance of the size- and shape-matching between the anion and the receptor cavity. The solution studies show the strongest binding of the ideally fitting SbF6− anion, with an association constant of 2.5 × 105 M−1 in pure methanol. The symmetric, receptor cavity-matching charge distribution of the anions results in drastically stronger binding than in the case of anions with asymmetric charge distribution. Isothermal titration calorimetry (ITC) reveals the complexation to be exothermic and enthalpy-driven. The DFT calculations and VT-NMR studies confirmed that the complexation proceeds through a pre-complex formation while the exchange of methanol solvent with the anion is the rate-limiting step. The octameric cycHC[8] offers a unique example of template-controlled design of an electroneutral host for binding large anions in a competitive polar solvent.en
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesChemical Science
dc.rightsCC BY 4.0
dc.subject.otheranion receptors
dc.titleChiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineOrganic Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.rights.copyright© 2017 the Authors
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundingprogramAkatemiatutkijan tehtävä, SAfi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundingprogramResearch post as Academy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundinginformationThis research was supported by the Academy of Finland (KR: grants 263256, 265328 and 292746, EK: grants 284562 and 278743), the Estonian Ministry of Education and Research through Grants IUT19-32, IUT19-9, IUT23-7 and PUT692, TUT grant No. B25, the ESF DoRa, and the EU European Regional Development Fund through the Center of Excellence in Molecular Cell Engineering projects 3.2.0101.08-0017 and TK134. Computations were performed on the HPC cluster at TUT, which is part of the ETAIS project. FT acknowledges the support from NGS-NANO through a Ph.D. fellowship. The authors would like to thank Marina Kudrjašova and Mari-Liis Kasemets for assistance with NMR, Ly Pärnaste with ITC, Toomas Kaevand with computations and Lauri Kivijärvi with MS experiments.

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0