Näytä suppeat kuvailutiedot

dc.contributor.authorKaabel, Sandra
dc.contributor.authorAdamson, Jasper
dc.contributor.authorTopic, Filip
dc.contributor.authorKiesilä, Anniina
dc.contributor.authorKalenius, Elina
dc.contributor.authorÖeren, Mario
dc.contributor.authorReimund, Mart
dc.contributor.authorPrigorchenko, Elena
dc.contributor.authorLõokene, Aivar
dc.contributor.authorReich, Hans J.
dc.contributor.authorRissanen, Kari
dc.contributor.authorAav, Riina
dc.date.accessioned2019-11-25T11:37:40Z
dc.date.available2019-11-25T11:37:40Z
dc.date.issued2017
dc.identifier.citationKaabel, S., Adamson, J., Topic, F., Kiesilä, A., Kalenius, E., Öeren, M., Reimund, M., Prigorchenko, E., Lõokene, A., Reich, H. J., Rissanen, K., & Aav, R. (2017). Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution. <i>Chemical Science</i>, <i>8</i>(3), 2184-2190. <a href="https://doi.org/10.1039/C6SC05058A" target="_blank">https://doi.org/10.1039/C6SC05058A</a>
dc.identifier.otherCONVID_26917732
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66509
dc.description.abstractA novel eight-membered macrocycle of the hemicucurbit[n]uril family, chiral (all-R)-cyclohexanohemicucurbit[8]uril (cycHC[8]) binds anions in a purely protic solvent with remarkable selectivity. The cycHC[8] portals open and close to fully encapsulate anions in a 1 : 1 ratio, resembling a molecular Pac-Man™. Comprehensive gas, solution and solid phase studies prove that the binding is governed by the size, shape and charge distribution of the bound anion. Gas phase studies show an order of SbF6− ≈ PF6− > ReO4− > ClO4− > SCN− > BF4− > HSO4− > CF3SO3− for anion complexation strength. An extensive crystallographic study reveals the preferred orientations of the anions within the octahedral cavity of cycHC[8] and highlights the importance of the size- and shape-matching between the anion and the receptor cavity. The solution studies show the strongest binding of the ideally fitting SbF6− anion, with an association constant of 2.5 × 105 M−1 in pure methanol. The symmetric, receptor cavity-matching charge distribution of the anions results in drastically stronger binding than in the case of anions with asymmetric charge distribution. Isothermal titration calorimetry (ITC) reveals the complexation to be exothermic and enthalpy-driven. The DFT calculations and VT-NMR studies confirmed that the complexation proceeds through a pre-complex formation while the exchange of methanol solvent with the anion is the rate-limiting step. The octameric cycHC[8] offers a unique example of template-controlled design of an electroneutral host for binding large anions in a competitive polar solvent.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesChemical Science
dc.rightsCC BY 4.0
dc.subject.othermacrocycles
dc.subject.otherhemicucurbituril
dc.subject.otheranion receptors
dc.titleChiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201911224973
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineOrganic Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-11-22T07:15:15Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2184-2190
dc.relation.issn2041-6520
dc.relation.numberinseries3
dc.relation.volume8
dc.type.versionpublishedVersion
dc.rights.copyright© 2017 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber263256
dc.relation.grantnumber278743
dc.relation.grantnumber292746
dc.relation.grantnumber284562
dc.subject.ysovalikoivuus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p22549
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1039/C6SC05058A
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundinginformationThis research was supported by the Academy of Finland (KR: grants 263256, 265328 and 292746, EK: grants 284562 and 278743), the Estonian Ministry of Education and Research through Grants IUT19-32, IUT19-9, IUT23-7 and PUT692, TUT grant No. B25, the ESF DoRa, and the EU European Regional Development Fund through the Center of Excellence in Molecular Cell Engineering projects 3.2.0101.08-0017 and TK134. Computations were performed on the HPC cluster at TUT, which is part of the ETAIS project. FT acknowledges the support from NGS-NANO through a Ph.D. fellowship. The authors would like to thank Marina Kudrjašova and Mari-Liis Kasemets for assistance with NMR, Ly Pärnaste with ITC, Toomas Kaevand with computations and Lauri Kivijärvi with MS experiments.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0