Radiating and non-radiating sources in elasticity
Blåsten, E., & Lin, Y.-H. (2019). Radiating and non-radiating sources in elasticity. Inverse Problems, 35(1), 015005. https://doi.org/10.1088/1361-6420/aae99e
Published in
Inverse ProblemsDate
2019Copyright
© 2018 IOP Publishing Ltd
In this work, we study the inverse source problem of a fixed frequency for the Navier equation. We investigate non-radiating external forces. If the support of such a force has a convex or non-convex corner or edge on its boundary, the force must be vanishing there. The vanishing property at corners and edges holds also for sufficiently smooth transmission eigenfunctions in elasticity. The idea originates from the enclosure method: an energy identity and a new type of exponential solution for the Navier equation.
Publisher
Institute of PhysicsISSN Search the Publication Forum
0266-5611Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/33537213
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Project, AoF
Additional information about funding
The authors appreciate Professor Ikehata and the anonymous referees for some useful comments to improve this work. Y-H Lin is partially supported by the Academy of Finland, under the project number 309963.License
Related items
Showing items with similar title or keywords.
-
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Optimality of Increasing Stability for an Inverse Boundary Value Problem
Kow, Pu-Zhao; Uhlmann, Gunther; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2021)In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
Calderón's problem for p-laplace type equations
Brander, Tommi (University of Jyväskylä, 2016)We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ ...