Näytä suppeat kuvailutiedot

dc.contributor.authorTian, Yaolan
dc.contributor.authorPuurtinen, Tuomas A.
dc.contributor.authorGeng, Zhuoran
dc.contributor.authorMaasilta, Ilari J.
dc.date.accessioned2019-07-30T08:11:21Z
dc.date.available2019-07-30T08:11:21Z
dc.date.issued2019
dc.identifier.citationTian, Y., Puurtinen, T. A., Geng, Z., & Maasilta, I. J. (2019). Minimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals. <i>Physical Review Applied</i>, <i>12</i>(1), Article 014008. <a href="https://doi.org/10.1103/physrevapplied.12.014008" target="_blank">https://doi.org/10.1103/physrevapplied.12.014008</a>
dc.identifier.otherCONVID_31392941
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65157
dc.description.abstractPeriodic hole-array phononic crystals (PnCs) can strongly modify phonon dispersion relations and have been shown to influence thermal conductance coherently, especially at low temperatures where bulk scattering is suppressed. One very important parameter influencing this effect is the period of the structure. Here, we measure the subkelvin thermal conductance of nanofabricated PnCs with identical hole-filling factors but three different periodicities, of 4, 8, and 16μm, using superconducting tunnel-junction thermometry. We find that all the measured samples can suppress thermal conductance by an order of magnitude and have a lower thermal conductance than the previously measured smaller-period 1-μm and 2.4-μm structures. The 8-μm-period PnC gives the lowest thermal conductance of all the above samples and has the lowest specific conductance per unit heater length observed to date in PnCs. In contrast, coherent transport theory predicts that the longest period should have the lowest thermal conductance. Comparison with incoherent simulations suggests that diffusive boundary scattering is likely the mechanism behind the partial breakdown of the coherent theory.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review Applied
dc.rightsIn Copyright
dc.subject.otherphononic crystals
dc.subject.otherthermal conductance
dc.titleMinimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201907303718
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2331-7019
dc.relation.numberinseries1
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber298667
dc.subject.ysonanorakenteet
dc.subject.ysolämmön johtuminen
dc.subject.ysofononit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p19905
jyx.subject.urihttp://www.yso.fi/onto/yso/p28089
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/physrevapplied.12.014008
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis study was supported by the Academy of Finland Project Number 298667 and the China Scholarship Council. We thank C. Dames and G. Wehmeyer for sharing the Monte Carlo code. The computational facilities provided by the CSC-IT Center for Science Ltd. are acknowledged.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright