Show simple item record

dc.contributor.authorFieldsend, Jonathan
dc.contributor.authorChugh, Tinkle
dc.contributor.authorAllmendinger, Richard
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2019-07-22T08:52:54Z
dc.date.available2019-07-22T08:52:54Z
dc.date.issued2019
dc.identifier.citationFieldsend, J., Chugh, T., Allmendinger, R., & Miettinen, K. (2019). A feature rich distance-based many-objective visualisable test problem generator. In <i>GECCO '19 : Proceedings of the Genetic and Evolutionary Computation Conference</i> (pp. 541-549). ACM. <a href="https://doi.org/10.1145/3321707.3321727" target="_blank">https://doi.org/10.1145/3321707.3321727</a>
dc.identifier.otherCONVID_30603930
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65086
dc.description.abstractIn optimiser analysis and design it is informative to visualise how a search point/population moves through the design space over time. Visualisable distance-based many-objective optimisation problems have been developed whose design space is in two-dimensions with arbitrarily many objective dimensions. Previous work has shown how disconnected Pareto sets may be formed, how problems can be projected to and from arbitrarily many design dimensions, and how dominance resistant regions of design space may be defined. Most recently, a test suite has been proposed using distances to lines rather than points. However, active use of visualisable problems has been limited. This may be because the type of problem characteristics available has been relatively limited compared to many practical problems (and non-visualisable problem suites). Here we introduce the mechanisms required to embed several widely seen problem characteristics in the existing problem framework. These include variable density of solutions in objective space, landscape discontinuities, varying objective ranges, neutrality, and non-identical disconnected Pareto set regions. Furthermore, we provide an automatic problem generator (as opposed to hand-tuned problem definitions). The flexibility of the problem generator is demonstrated by analysing the performance of popular optimisers on a range of sampled instances.fi
dc.format.extent1545
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherACM
dc.relation.ispartofGECCO '19 : Proceedings of the Genetic and Evolutionary Computation Conference
dc.rightsIn Copyright
dc.subject.othermulti-objective test problems
dc.subject.otherevolutionary optimisation
dc.subject.othertest suite
dc.titleA feature rich distance-based many-objective visualisable test problem generator
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201907183650
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2019-07-18T12:15:18Z
dc.relation.isbn978-1-4503-6111-8
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange541-549
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Association for Computing Machinery
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceGenetic and Evolutionary Computation Conference
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysoevoluutiolaskenta
dc.subject.ysovisualisointi
dc.subject.ysobenchmarking
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p28071
jyx.subject.urihttp://www.yso.fi/onto/yso/p7938
jyx.subject.urihttp://www.yso.fi/onto/yso/p9747
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1145/3321707.3321727
jyx.fundinginformationThis work was supported by the Engineering and Physical Sciences Research Council [grant number EP/N017846/1] and the Natural Environment Research Council [grant number NE/P017436/1]. This research is related to the thematic research area DEMO (jyu.fi/demo) of the University of Jyväskylä.
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright