Maximal function estimates and self-improvement results for Poincaré inequalities
Abstract
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces.
Main Authors
Format
Articles
Research article
Published
2019
Series
Subjects
Publication in research information system
Publisher
Springer Berlin Heidelberg
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201906253440Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
0025-2611
DOI
https://doi.org/10.1007/s00229-018-1016-1
Language
English
Published in
Manuscripta Mathematica
Citation
- Kinnunen, J., Lehrbäck, J., Vähäkangas, A., & Zhong, X. (2019). Maximal function estimates and self-improvement results for Poincaré inequalities. Manuscripta Mathematica, 158(1-2), 119-147. https://doi.org/10.1007/s00229-018-1016-1
Copyright© Springer-Verlag GmbH Germany, part of Springer Nature 2018