Show simple item record

dc.contributor.authorKinnunen, Juha
dc.contributor.authorLehrbäck, Juha
dc.contributor.authorVähäkangas, Antti
dc.contributor.authorZhong, Xiao
dc.date.accessioned2019-06-28T08:54:05Z
dc.date.available2019-06-28T08:54:05Z
dc.date.issued2019fi
dc.identifier.citationKinnunen, J., Lehrbäck, J., Vähäkangas, A., & Zhong, X. (2019). Maximal function estimates and self-improvement results for Poincaré inequalities. <em>Manuscripta Mathematica</em>, 158 (1-2), 119-147. <a href="https://doi.org/10.1007/s00229-018-1016-1">doi:10.1007/s00229-018-1016-1</a>fi
dc.identifier.otherTUTKAID_77328
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64914
dc.description.abstractOur main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Berlin Heidelberg
dc.relation.ispartofseriesManuscripta Mathematica
dc.rightsIn Copyright
dc.subject.otherharmoninen analyysifi
dc.subject.otherfunktionaalianalyysifi
dc.subject.otherepäyhtälötfi
dc.subject.otherharmonic analysisfi
dc.subject.otherfunctional analysisfi
dc.subject.otherinequalitiesfi
dc.titleMaximal function estimates and self-improvement results for Poincaré inequalitiesfi
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201906253440
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikka
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-06-25T12:15:30Z
dc.description.reviewstatuspeerReviewed
dc.format.pagerange119-147
dc.relation.issn0025-2611
dc.relation.numberinseries1-2
dc.relation.volume158
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag GmbH Germany, part of Springer Nature 2018
dc.rights.accesslevelopenAccessfi
dc.format.contentfulltext
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s00229-018-1016-1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright