In between the inequalities of Sobolev and Hardy
Lehrbäck, J., & Vähäkangas, A. (2016). In between the inequalities of Sobolev and Hardy. Journal of Functional Analysis, 271(2), 330-364. https://doi.org/10.1016/j.jfa.2016.04.028
Published in
Journal of Functional AnalysisDate
2016Copyright
© 2016 Elsevier Inc.
We establish both sufficient and necessary conditions for the validity of the so-called Hardy–Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions.
Publisher
Academic Press Inc.ISSN Search the Publication Forum
0022-1236Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/25303150
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Characterisation of upper gradients on the weighted Euclidean space and applications
Lučić, Danka; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2021)In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper ... -
Two-Sided Boundary Points of Sobolev Extension Domains on Euclidean Spaces
García-Bravo, Miguel; Rajala, Tapio; Takanen, Jyrki (Springer, 2024)We prove an estimate on the Hausdorff dimension of the set of two-sided boundary points of general Sobolev extension domains on Euclidean spaces. We also present examples showing lower bounds on possible dimension estimates ... -
Diff-convex combinations of Euclidean distances : a search for optima
Valkonen, Tuomo (2008)This work presents a study of optimisation problems involving differences of convex (diff-convex) functions of Euclidean distances. Results are provided in four themes: general theory of diff-convex functions, extensions ... -
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
Di Marino, Simone; Lučić, Danka; Pasqualetto, Enrico (Institut de France, 2020)We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon ... -
Poincaré duality for open sets in Euclidean spaces
Moisala, Terhi (2016)Todistamme tässä työssä Poincarén dualiteetin Euklidisten avaruuksien avoimille joukoille. Annamme lyhyen johdatuksen differentiaaligeometriaan ja määrittelemme de Rham -kohomologian käsitteen. Itse Poincarén dualiteetin ...