In between the inequalities of Sobolev and Hardy
Lehrbäck, J., & Vähäkangas, A. (2016). In between the inequalities of Sobolev and Hardy. Journal of Functional Analysis, 271(2), 330-364. https://doi.org/10.1016/j.jfa.2016.04.028
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2016Tekijänoikeudet
© 2016 Elsevier Inc.
We establish both sufficient and necessary conditions for the validity of the so-called Hardy–Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions.
Julkaisija
Academic Press Inc.ISSN Hae Julkaisufoorumista
0022-1236Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/25303150
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities
Dyda, Bartłomiej; Ihnatsyeva, Lizaveta; Lehrbäck, Juha; Tuominen, Heli; Vähäkangas, Antti (Springer, 2019) -
Assouad Type Dimensions in Geometric Analysis
Lehrbäck, Juha (Birkhäuser, 2021)We consider applications of the dual pair of the (upper) Assouad dimension and the lower (Assouad) dimension in analysis. We relate these notions to other dimensional conditions such as a Hausdorff content density condition ... -
Characterisation of upper gradients on the weighted Euclidean space and applications
Lučić, Danka; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2021)In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper ... -
Two-Sided Boundary Points of Sobolev Extension Domains on Euclidean Spaces
García-Bravo, Miguel; Rajala, Tapio; Takanen, Jyrki (Springer, 2024)We prove an estimate on the Hausdorff dimension of the set of two-sided boundary points of general Sobolev extension domains on Euclidean spaces. We also present examples showing lower bounds on possible dimension estimates ... -
Diff-convex combinations of Euclidean distances : a search for optima
Valkonen, Tuomo (2008)This work presents a study of optimisation problems involving differences of convex (diff-convex) functions of Euclidean distances. Results are provided in four themes: general theory of diff-convex functions, extensions ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.