Markovin ketju Monte Carlo -simulointi ja Peskunin järjestys
Tämän tutkielman tavoitteena on esitellä Markovin ketju Monte Carlo -simulointi äärellisessä tila-avaruudessa ja käsitellä simulointialgoritmien vertailuun liittyvää ongelmaa. Markovin ketju Monte Carlo -simuloinnissa funktion odotusarvolle lasketaan approksimaatioita simuloitua Markovin ketjua apuna käyttäen. Usein simulointi voidaan tehdä useammalla kuin yhdellä algoritmilla ja halutaan selvittää, mikä algoritmi soveltuu tehtävään parhaiten.
Kun simulaatioaskelten määrä lähestyy ääretöntä, Markovin ketju Monte Carlo -estimaatti suppenee melkein varmasti kohti odotusarvon oikeaa arvoa käytetystä simulointialgoritmista riippumatta. Käytännössä Markovin ketju Monte Carlo -simulointi tuottaa kuitenkin vain odotusarvon approksimaation, koska mikään todellinen simulointi ei voi jatkua äärettömän pitkään. Vain äärellisen monen simulaatioaskeleen käyttö aiheuttaa virheen, joka on luonteeltaan satunnainen: virhe kuuluu tietylle välille jollakin todennäköisyydellä. On luonnollista kysyä, miten approksimaation tarkkuus riippuu simulointialgoritmista. Kaikki algoritmit antavat odotusarvolle arvion halutulla tarkkuudella, jos simulointia jatketaan riittävän kauan. Jotkut algoritmit tuottavat kuitenkin tarkkoja approksimaatioita nopeammin kuin toiset, mikä on motivaatio algoritmien vertailulle. Ei kuitenkaan ole aivan selvää, miten vertailu pitäisi käytännössä tehdä. Halutun tarkkuuden saavuttamiseksi vaadittavaa aikaa on vaikea arvioida, eivätkä pelkät arviot edes ole riittävä perusta algoritmien vertailulle. Voi esimerkiksi käydä niin, että arvioitu alaraja algoritmin P vaatimalle ajalle on pienempi kuin alaraja algoritmin Q vaatimalle ajalle, mutta silti algoritmi Q pääsee haluttuun tarkkuuteen nopeammin kuin algoritmi P. Pelkät alarajat eivät siis kerro tarpeeksi vaadittavien aikojen todellisista arvoista. Arvioiden sijaan tarvitaan jokin eksakti riippuvuus simulointivirheen ja algoritmin välille.
Kriteeri, jonka suhteen algoritmien vertailu tehdään, johdetaan Markovin ketjujen keskeistä raja-arvolausetta käyttäen. Keskeinen raja-arvolause mahdollistaa simulointivirheiden todennäköisyyksien raja-arvon eksaktin laskemisen tietyssä erikoistapauksessa. Tarkastelu osoittaa, että algoritmien vertailemiseksi kannattaa tutkia niiden asymptoottisia variansseja: kahdesta algoritmista se, jonka asymptoottinen varianssi annetulle funktiolle on pienempi, soveltuu paremmin kyseisen funktion odotusarvon simulointiin. Kriteerin ongelmana on, että sen soveltaminen ei ole ihan suoraviivaista. Käytännössä algoritmeista tiedetään vain niiden siirtymätodennäköisyysmatriisit, joten algoritmien vertailemiseksi täytyy selvittää, miten asymptoottinen varianssi riippuu siirtymätodennäköisyysmatriisista. Tässä tutkielmassa tarkastelu rajataan kääntyviin Markovin ketjuihin, jolloin kyseinen riippuvuus voidaan selvittää funktionaalianalyysin tuloksia hyödyntäen. Tämän jälkeen vertailu onnistuu tietyssä erikoistapauksessa Peskunin järjestystä käyttämällä. Peskunin järjestyksen sovelluksena osoitetaan, että Metropolis–Hastings -algoritmi on parempi kuin Barkerin algoritmi.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29704]
License
Related items
Showing items with similar title or keywords.
-
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Franks, Jordan; Vihola, Matti (Elsevier, 2020)We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ... -
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ... -
Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo
Vihola, Matti (John Wiley & Sons, 2020)Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a ... -
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ... -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ...